/** * This method is required if the AlgorithmPerformed interface is implemented. It is called by the * algorithms when it has completed or failed to to complete, so that the dialog can be display * the result image and/or clean up. * * @param algorithm Algorithm that caused the event. */ public void algorithmPerformed(AlgorithmBase algorithm) { if (algorithm instanceof AlgorithmNonlocalMeansFilter) { image.clearMask(); if ((nlMeansFilterAlgo.isCompleted() == true) && (resultImage != null)) { updateFileInfo(image, resultImage); resultImage.clearMask(); // The algorithm has completed and produced a new image to be displayed. try { new ViewJFrameImage(resultImage, null, new Dimension(610, 200)); } catch (OutOfMemoryError error) { MipavUtil.displayError("Out of memory: unable to open new frame"); } } else if (resultImage == null) { // These next lines set the titles in all frames where the source image is displayed to // image name so as to indicate that the image is now unlocked! // The image frames are enabled and then registed to the userinterface. Vector<ViewImageUpdateInterface> imageFrames = image.getImageFrameVector(); for (int i = 0; i < imageFrames.size(); i++) { ((Frame) (imageFrames.elementAt(i))).setTitle(titles[i]); ((Frame) (imageFrames.elementAt(i))).setEnabled(true); if (((Frame) (imageFrames.elementAt(i))) != parentFrame) { userInterface.registerFrame((Frame) (imageFrames.elementAt(i))); } } if (parentFrame != null) { userInterface.registerFrame(parentFrame); } image.notifyImageDisplayListeners(null, true); } else if (resultImage != null) { // algorithm failed but result image still has garbage resultImage.disposeLocal(); // clean up memory resultImage = null; } } if (algorithm.isCompleted()) { insertScriptLine(); } // save the completion status for later setComplete(algorithm.isCompleted()); nlMeansFilterAlgo.finalize(); nlMeansFilterAlgo = null; dispose(); }
/** * Returns the name of an image output by this algorithm, the image returned depends on the * parameter label given (which can be used to retrieve the image object from the image registry). * * @param imageParamName The output image parameter label for which to get the image name. * @return The image name of the requested output image parameter label. */ public String getOutputImageName(final String imageParamName) { if (imageParamName.equals(AlgorithmParameters.RESULT_IMAGE)) { if (getResultImage() != null) { // algo produced a new result image return getResultImage().getImageName(); } else { // algo was done in place return image.getImageName(); } } Preferences.debug( "Unrecognized output image parameter: " + imageParamName + "\n", Preferences.DEBUG_SCRIPTING); return null; }
/** {@inheritDoc} */ protected void setGUIFromParams() { image = scriptParameters.retrieveInputImage(); userInterface = ViewUserInterface.getReference(); parentFrame = image.getParentFrame(); if (scriptParameters.doOutputNewImage()) { setDisplayLocNew(); } else { setDisplayLocReplace(); } searchWindowSide = scriptParameters.getParams().getInt("search_window_side"); similarityWindowSide = scriptParameters.getParams().getInt("similarity_window_side"); noiseStandardDeviation = scriptParameters.getParams().getFloat("noise_standard_deviation"); degreeOfFiltering = scriptParameters.getParams().getFloat("degree_of_filtering"); doRician = scriptParameters.getParams().getBoolean("do_rician"); image25D = scriptParameters.doProcess3DAs25D(); }
/** * Use the GUI results to set up the variables needed to run the algorithm. * * @return <code>true</code> if parameters set successfully, <code>false</code> otherwise. */ private boolean setVariables() { String tmpStr; System.gc(); if (replaceImage.isSelected()) { displayLoc = REPLACE; } else if (newImage.isSelected()) { displayLoc = NEW; } tmpStr = textSearchWindowSide.getText(); if (testParameter(tmpStr, 5, 101)) { searchWindowSide = Integer.valueOf(tmpStr).intValue(); } else { MipavUtil.displayError("Search window side must be between 5 and 101"); textSearchWindowSide.requestFocus(); textSearchWindowSide.selectAll(); return false; } if ((searchWindowSide % 2) == 0) { MipavUtil.displayError("Search window side must be an odd number"); textSearchWindowSide.requestFocus(); textSearchWindowSide.selectAll(); return false; } tmpStr = textSimilarityWindowSide.getText(); if (testParameter(tmpStr, 3, 99)) { similarityWindowSide = Integer.valueOf(tmpStr).intValue(); } else { MipavUtil.displayError("Similarity window side must be between 3 and 99"); textSimilarityWindowSide.requestFocus(); textSimilarityWindowSide.selectAll(); return false; } if ((similarityWindowSide % 2) == 0) { MipavUtil.displayError("Similarity window side must be an odd number"); textSimilarityWindowSide.requestFocus(); textSimilarityWindowSide.selectAll(); return false; } if (similarityWindowSide >= searchWindowSide) { MipavUtil.displayError("Similarity window side must be less than search window side"); textSimilarityWindowSide.requestFocus(); textSimilarityWindowSide.selectAll(); return false; } tmpStr = textNoiseStandardDeviation.getText(); if (testParameter(tmpStr, 0.001, 1000.0)) { noiseStandardDeviation = Float.valueOf(tmpStr).floatValue(); } else { MipavUtil.displayError("Radius must be between 0.001 and 1000.0"); textNoiseStandardDeviation.requestFocus(); textNoiseStandardDeviation.selectAll(); return false; } doRician = doRicianCheckBox.isSelected(); if (doRician) { tmpStr = textDegree.getText(); if (testParameter(tmpStr, 1.0, 10.0)) { degreeOfFiltering = Float.valueOf(tmpStr).floatValue(); } else { MipavUtil.displayError("Degree of filtering must be between 1.0 and 10.0"); textDegree.requestFocus(); textDegree.selectAll(); } } if (image.getNDims() > 2) { image25D = image25DCheckBox.isSelected(); } return true; }
/** * Initializes the GUI by creating the components, placing them in the dialog, and displaying * them. */ private void init() { setForeground(Color.black); setTitle("Nonlocal Means Filter"); JPanel mainPanel; mainPanel = new JPanel(); mainPanel.setBorder(BorderFactory.createEmptyBorder(3, 3, 3, 3)); mainPanel.setLayout(new GridBagLayout()); GridBagConstraints gbc = new GridBagConstraints(); gbc.gridwidth = 1; gbc.gridheight = 1; gbc.anchor = GridBagConstraints.WEST; gbc.weightx = 1; gbc.insets = new Insets(3, 3, 3, 3); gbc.gridx = 0; gbc.gridy = 0; gbc.fill = GridBagConstraints.HORIZONTAL; paramPanel = new JPanel(new GridBagLayout()); paramPanel.setForeground(Color.black); paramPanel.setBorder(buildTitledBorder("Parameters")); mainPanel.add(paramPanel, gbc); GridBagConstraints gbc2 = new GridBagConstraints(); gbc2.gridwidth = 1; gbc2.gridheight = 1; gbc2.anchor = GridBagConstraints.WEST; gbc2.weightx = 1; gbc2.insets = new Insets(3, 3, 3, 3); gbc2.gridx = 0; gbc2.gridy = 0; gbc2.fill = GridBagConstraints.HORIZONTAL; labelSearchWindowSide = createLabel("Search window side (odd)"); paramPanel.add(labelSearchWindowSide, gbc2); gbc2.gridx = 1; textSearchWindowSide = createTextField("15"); paramPanel.add(textSearchWindowSide, gbc2); gbc2.gridx = 0; gbc2.gridy = 1; labelSimilarityWindowSide = createLabel("Similarity window side (odd) "); paramPanel.add(labelSimilarityWindowSide, gbc2); gbc2.gridx = 1; textSimilarityWindowSide = createTextField("7"); paramPanel.add(textSimilarityWindowSide, gbc2); gbc2.gridx = 0; gbc2.gridy = 2; labelNoiseStandardDeviation = createLabel("Noise standard deviation "); paramPanel.add(labelNoiseStandardDeviation, gbc2); gbc2.gridx = 1; textNoiseStandardDeviation = createTextField("10.0"); paramPanel.add(textNoiseStandardDeviation, gbc2); gbc2.gridx = 0; gbc2.gridy = 3; labelDegree = createLabel("Degree of filtering "); labelDegree.setEnabled(doRician); paramPanel.add(labelDegree, gbc2); gbc2.gridx = 1; textDegree = createTextField("1.414"); textDegree.setEnabled(doRician); paramPanel.add(textDegree, gbc2); gbc2.gridx = 0; gbc2.gridy = 4; doRicianCheckBox = new JCheckBox("Deal with Rician noise in MRI"); doRicianCheckBox.setFont(serif12); doRicianCheckBox.setSelected(false); doRicianCheckBox.addActionListener(this); paramPanel.add(doRicianCheckBox, gbc2); if (image.getNDims() > 2) { gbc2.gridx = 0; gbc2.gridy = 5; gbc2.gridwidth = 2; image25DCheckBox = new JCheckBox("Process each slice independently (2.5D)"); image25DCheckBox.setFont(serif12); paramPanel.add(image25DCheckBox, gbc2); image25DCheckBox.setSelected(false); } // if (image.getNDims > 2) JPanel outputOptPanel = new JPanel(new GridLayout(1, 2)); destinationPanel = new JPanel(new BorderLayout()); destinationPanel.setForeground(Color.black); destinationPanel.setBorder(buildTitledBorder("Destination")); outputOptPanel.add(destinationPanel); destinationGroup = new ButtonGroup(); newImage = new JRadioButton("New image", true); newImage.setBounds(10, 16, 120, 25); newImage.setFont(serif12); destinationGroup.add(newImage); destinationPanel.add(newImage, BorderLayout.NORTH); replaceImage = new JRadioButton("Replace image", false); replaceImage.setFont(serif12); destinationGroup.add(replaceImage); destinationPanel.add(replaceImage, BorderLayout.CENTER); // Only if the image is unlocked can it be replaced. if (image.getLockStatus() == ModelStorageBase.UNLOCKED) { replaceImage.setEnabled(true); } else { replaceImage.setEnabled(false); } gbc.gridx = 0; gbc.gridy = 1; mainPanel.add(outputOptPanel, gbc); mainDialogPanel.add(mainPanel, BorderLayout.CENTER); mainDialogPanel.add(buildButtons(), BorderLayout.SOUTH); getContentPane().add(mainDialogPanel); pack(); setResizable(true); // setVisible(true); System.gc(); }
/** * Once all the necessary variables are set, call the Nonlocal Means filter algorithm based on * what type of image this is and whether or not there is a separate destination image. */ protected void callAlgorithm() { String name = makeImageName(image.getImageName(), "_NonlocalMeans"); int[] destExtents; if (image.getNDims() == 2) { // source image is 2D destExtents = new int[2]; destExtents[0] = image.getExtents()[0]; // X dim destExtents[1] = image.getExtents()[1]; // Y dim } else { destExtents = new int[3]; destExtents[0] = image.getExtents()[0]; destExtents[1] = image.getExtents()[1]; destExtents[2] = image.getExtents()[2]; } if (displayLoc == NEW) { try { // Make result image of float type if (image.isColorImage()) { resultImage = new ModelImage(ModelImage.ARGB, destExtents, name); } else { resultImage = new ModelImage(ModelImage.FLOAT, destExtents, name); } // resultImage = (ModelImage)image.clone(); // resultImage.setImageName(name); // Make algorithm nlMeansFilterAlgo = new AlgorithmNonlocalMeansFilter( resultImage, image, searchWindowSide, similarityWindowSide, noiseStandardDeviation, degreeOfFiltering, doRician, image25D); // This is very important. Adding this object as a listener allows the algorithm to // notify this object when it has completed of failed. See algorithm performed event. // This is made possible by implementing AlgorithmedPerformed interface nlMeansFilterAlgo.addListener(this); createProgressBar(image.getImageName(), nlMeansFilterAlgo); // Hide dialog setVisible(false); if (isRunInSeparateThread()) { // Start the thread as a low priority because we wish to still have user interface work // fast if (nlMeansFilterAlgo.startMethod(Thread.MIN_PRIORITY) == false) { MipavUtil.displayError("A thread is already running on this object"); } } else { nlMeansFilterAlgo.run(); } } catch (OutOfMemoryError x) { MipavUtil.displayError("Dialog Nonlocal Means Filter: unable to allocate enough memory"); if (resultImage != null) { resultImage.disposeLocal(); // Clean up memory of result image resultImage = null; } return; } } else { try { // No need to make new image space because the user has choosen to replace the source image // Make the algorithm class nlMeansFilterAlgo = new AlgorithmNonlocalMeansFilter( null, image, searchWindowSide, similarityWindowSide, noiseStandardDeviation, degreeOfFiltering, doRician, image25D); // This is very important. Adding this object as a listener allows the algorithm to // notify this object when it has completed of failed. See algorithm performed event. // This is made possible by implementing AlgorithmedPerformed interface nlMeansFilterAlgo.addListener(this); createProgressBar(image.getImageName(), nlMeansFilterAlgo); // Hide the dialog since the algorithm is about to run. setVisible(false); // These next lines set the titles in all frames where the source image is displayed to // "locked - " image name so as to indicate that the image is now read/write locked! // The image frames are disabled and then unregisted from the userinterface until the // algorithm has completed. Vector<ViewImageUpdateInterface> imageFrames = image.getImageFrameVector(); titles = new String[imageFrames.size()]; for (int i = 0; i < imageFrames.size(); i++) { titles[i] = ((Frame) (imageFrames.elementAt(i))).getTitle(); ((Frame) (imageFrames.elementAt(i))).setTitle("Locked: " + titles[i]); ((Frame) (imageFrames.elementAt(i))).setEnabled(false); userInterface.unregisterFrame((Frame) (imageFrames.elementAt(i))); } if (isRunInSeparateThread()) { // Start the thread as a low priority because we wish to still have user interface work // fast if (nlMeansFilterAlgo.startMethod(Thread.MIN_PRIORITY) == false) { MipavUtil.displayError("A thread is already running on this object"); } } else { nlMeansFilterAlgo.run(); } } catch (OutOfMemoryError x) { MipavUtil.displayError("Dialog Nonlocal Means Filter: unable to allocate enough memory"); return; } } }