/** * Applies the shifts {@code u} to the trace {@code g}. * * @param sf the sampling that {@code g} is being warped to. * @param u the shifts to apply to {@code g}. * @param sg the sampling of {@code g}. * @param g the trace to be warped. * @return the warped image. */ public static float[][][] applyShifts( Sampling sf, final float[][][] u, Sampling sg, final float[][][] g) { final int n1 = u[0][0].length; final int n2 = u[0].length; final int n3 = u.length; final int ng = g[0][0].length; final double dg = sg.getDelta(); final double df = sf.getDelta(); final double fg = sg.getDelta(); final double ff = sf.getDelta(); final float[][][] hf = new float[n3][n2][n1]; final SincInterp si = new SincInterp(); int n23 = n3 * n2; Parallel.loop( n23, new Parallel.LoopInt() { public void compute(int i23) { int i2 = i23 % n2; int i3 = i23 / n2; double v = ff; for (int i1 = 0; i1 < n1; i1++, v = ff + i1 * df) { hf[i3][i2][i1] = si.interpolate(ng, dg, fg, g[i3][i2], (float) v + u[i3][i2][i1]); } } }); return hf; }
/** * Applies the shifts {@code u} to the trace {@code g}. * * @param sf the sampling that {@code g} is being warped to. * @param u the shifts to apply to {@code g}. * @param sg the sampling of {@code g}. * @param g the trace to be warped. * @return the warped trace. */ public static float[] applyShifts(Sampling sf, final float[] u, Sampling sg, final float[] g) { final int n1 = u.length; final int ng = g.length; final double dg = sg.getDelta(); final double df = sf.getDelta(); final double fg = sg.getDelta(); final double ff = sf.getDelta(); final float[] hf = new float[n1]; final SincInterp si = new SincInterp(); double v = ff; for (int i1 = 0; i1 < n1; i1++, v = ff + i1 * df) hf[i1] = si.interpolate(ng, dg, fg, g, (float) v + u[i1]); return hf; }
/** * Computes an array of VpVs ratios an array of shifts u using a backward difference * approximation. The relationship is defined as vpvs(t) = 1+2*(du/dt) * * @param u * @return computed vpvs values. */ public static float[] vpvsBd(Sampling su, float[] u) { float dui = 1.0f / (float) su.getDelta(); int n = u.length; float[] vpvs = new float[n]; vpvs[0] = 1.0f + 2.0f * (u[1] - u[0]) * dui; // at i1=0, forward difference for (int i1 = 1; i1 < n; ++i1) vpvs[i1] = 1.0f + 2.0f * (u[i1] - u[i1 - 1]) * dui; return vpvs; }
private static float[] getValues(Sampling s) { int n = s.getCount(); double f = s.getFirst(); double d = s.getDelta(); float[] x = new float[n]; for (int i = 0; i < n; i++) x[i] = (float) (f + i * d); return x; }
public static double[] getSubStrainMax(Sampling su, float[] u, double[] rmax) { float dui = 1.0f / (float) su.getDelta(); int n = u.length; int nm1 = n - 1; double[] rmaxNew = new double[n]; rmaxNew[0] = rmax[0] - (u[1] - u[0]) * dui; // forward diff rmaxNew[nm1] = rmax[nm1] - (u[nm1] - u[nm1 - 1]) * dui; // backward diff for (int i1 = 1; i1 < nm1; i1++) rmaxNew[i1] = rmax[i1] - (u[i1 + 1] - u[i1 - 1]) * 0.5 * dui; return rmaxNew; }
private static float[] firstDerivative(Sampling s, float[] f) { int n = f.length; int nm1 = n - 1; float[] g = new float[n]; float di = 1.0f / (float) s.getDelta(); float di2 = 0.5f * di; g[0] = (f[1] - f[0]) * di; // forward diff g[nm1] = (f[nm1] - f[nm1 - 1]) * di; // backward diff for (int i1 = 1; i1 < nm1; i1++) g[i1] = (f[i1 + 1] - f[i1 - 1]) * di2; return g; }