@Override public Graph search(DataSet dataSet, Parameters parameters) { edu.cmu.tetrad.search.Mbfs search = new edu.cmu.tetrad.search.Mbfs( test.getTest(dataSet, parameters), parameters.getInt("depth")); search.setKnowledge(knowledge); this.targetName = parameters.getString("targetName"); Node target = dataSet.getVariable(targetName); return search.search(target); }
/** Creates a cell count table for the given data set. */ public DataSetProbs(DataSet dataSet) { if (dataSet == null) { throw new NullPointerException(); } this.dataSet = dataSet; dims = new int[dataSet.getNumColumns()]; for (int i = 0; i < dims.length; i++) { DiscreteVariable variable = (DiscreteVariable) dataSet.getVariable(i); dims[i] = variable.getNumCategories(); } numRows = dataSet.getNumRows(); }
public void testManualDiscretize3() { Graph graph = new Dag(GraphUtils.randomGraph(5, 0, 5, 3, 3, 3, false)); SemPm pm = new SemPm(graph); SemIm im = new SemIm(pm); DataSet data = im.simulateData(100, false); List<Node> nodes = data.getVariables(); Discretizer discretizer = new Discretizer(data); discretizer.setVariablesCopied(true); discretizer.setVariablesCopied(true); discretizer.equalCounts(nodes.get(0), 3); DataSet discretized = discretizer.discretize(); System.out.println(discretized); assertTrue(discretized.getVariable(0) instanceof DiscreteVariable); assertTrue(discretized.getVariable(1) instanceof ContinuousVariable); assertTrue(discretized.getVariable(2) instanceof ContinuousVariable); assertTrue(discretized.getVariable(3) instanceof ContinuousVariable); assertTrue(discretized.getVariable(4) instanceof ContinuousVariable); }
private List<Node> expandVariable(DataSet dataSet, Node node) { if (node instanceof ContinuousVariable) { return Collections.singletonList(node); } if (node instanceof DiscreteVariable && ((DiscreteVariable) node).getNumCategories() < 3) { return Collections.singletonList(node); } if (!(node instanceof DiscreteVariable)) { throw new IllegalArgumentException(); } List<String> varCats = new ArrayList<String>(((DiscreteVariable) node).getCategories()); // first category is reference varCats.remove(0); List<Node> variables = new ArrayList<Node>(); for (String cat : varCats) { Node newVar; do { String newVarName = node.getName() + "MULTINOM" + "." + cat; newVar = new DiscreteVariable(newVarName, 2); } while (dataSet.getVariable(newVar.getName()) != null); variables.add(newVar); dataSet.addVariable(newVar); int newVarIndex = dataSet.getColumn(newVar); int numCases = dataSet.getNumRows(); for (int l = 0; l < numCases; l++) { Object dataCell = dataSet.getObject(l, dataSet.getColumn(node)); int dataCellIndex = ((DiscreteVariable) node).getIndex(dataCell.toString()); if (dataCellIndex == ((DiscreteVariable) node).getIndex(cat)) dataSet.setInt(l, newVarIndex, 1); else dataSet.setInt(l, newVarIndex, 0); } } return variables; }
protected SemIm estimateCoeffs(SemIm semIm) { // System.out.print("\n****************\nCalling 2SLS... "); SemGraph semGraph = semIm.getSemPm().getGraph(); // Get list of fixed measurements that will be kept fixed, and the // respective latent variables that are their parents. // "X" variables are exogenous, while "Y" variables are endogenous. List<Node> ly = new LinkedList<Node>(); List<Node> lx = new LinkedList<Node>(); List<Node> my1 = new LinkedList<Node>(); List<Node> mx1 = new LinkedList<Node>(); List<Node> observed = new LinkedList<Node>(); for (Node nodeA : semGraph.getNodes()) { if (nodeA.getNodeType() == NodeType.ERROR) { continue; } if (nodeA.getNodeType() == NodeType.LATENT) { if (semGraph.getParents(nodeA).size() == 0) { lx.add(nodeA); } else { ly.add(nodeA); } } else { observed.add(nodeA); } } setFixedNodes(semGraph, mx1, my1); // ------------------------------------------------------------------ // Estimate freeParameters for the latent/latent edges for (Node current : ly) { if (nodeName != null && !nodeName.equals(current.getName())) { continue; } // Build Z, the matrix containing the data for the fixed measurements // associated with the parents of the getModel (endogenous) latent node List<Node> endo_parents_m = new LinkedList<Node>(); List<Node> exo_parents_m = new LinkedList<Node>(); List<Node> endo_parents = new LinkedList<Node>(); List<Node> exo_parents = new LinkedList<Node>(); Iterator<Node> it_p = semGraph.getParents(current).iterator(); lNames = new String[lx.size() + ly.size()]; while (it_p.hasNext()) { Node node = it_p.next(); if (node.getNodeType() == NodeType.ERROR) { continue; } if (lx.contains(node)) { int position = lx.indexOf(node); exo_parents_m.add(mx1.get(position)); exo_parents.add(node); } else { int position = ly.indexOf(node); endo_parents_m.add(my1.get(position)); endo_parents.add(node); } } Object endp_a_m[] = endo_parents_m.toArray(); Object exop_a_m[] = exo_parents_m.toArray(); Object endp_a[] = endo_parents.toArray(); Object exop_a[] = exo_parents.toArray(); int n = dataSet.getNumRows(), c = endp_a_m.length + exop_a_m.length; if (c == 0) { continue; } double Z[][] = new double[n][c]; int count = 0; for (int i = 0; i < endp_a_m.length; i++) { Node node = (Node) endp_a_m[i]; String name = node.getName(); Node variable = dataSet.getVariable(name); int colIndex = dataSet.getVariables().indexOf(variable); // Column column = dataSet.getColumnObject(variable); // double column_data[] = (double[]) column.getRawData(); for (int j = 0; j < n; j++) { // Z[j][i] = column_data[j]; Z[j][i] = dataSet.getDouble(j, colIndex); } lNames[count++] = (endo_parents.get(i)).getName(); } for (int i = 0; i < exop_a_m.length; i++) { Node node = (Node) exop_a_m[i]; String name = node.getName(); Node variable = dataSet.getVariable(name); int colIndex = dataSet.getVariables().indexOf(variable); // Column column = dataSet.getColumnObject(variable); // double column_data[] = (double[]) column.getRawData(); for (int j = 0; j < n; j++) { // Z[j][endp_a_m.length + i] = column_data[j]; Z[j][endp_a_m.length + i] = dataSet.getDouble(j, colIndex); } lNames[count++] = exo_parents.get(i).getName(); } // Build V, the matrix containing the data for the nonfixed measurements // associated with the parents of the getModel (endogenous) latent node endo_parents_m = new LinkedList<Node>(); exo_parents_m = new LinkedList<Node>(); it_p = semGraph.getParents(current).iterator(); while (it_p.hasNext()) { Node node = it_p.next(); if (node.getNodeType() == NodeType.ERROR) { continue; } List<Node> other_measures = new LinkedList<Node>(); for (Node next : semGraph.getChildren(node)) { if (next.getNodeType() == NodeType.MEASURED) { other_measures.add(next); } } if (lx.contains(node)) { int position = lx.indexOf(node); other_measures.remove(mx1.get(position)); exo_parents_m.addAll(other_measures); } else { int position = ly.indexOf(node); other_measures.remove(my1.get(position)); endo_parents_m.addAll(other_measures); } } endp_a_m = endo_parents_m.toArray(); exop_a_m = exo_parents_m.toArray(); n = dataSet.getNumRows(); c = endp_a_m.length + exop_a_m.length; double V[][] = new double[n][c]; if (c == 0) { continue; } for (int i = 0; i < endp_a_m.length; i++) { Node node = ((Node) endp_a_m[i]); String name = node.getName(); Node variable = dataSet.getVariable(name); int colIndex = dataSet.getVariables().indexOf(variable); // Column column = dataSet.getColumnObject(variable); // double column_data[] = (double[]) column.getRawData(); for (int j = 0; j < n; j++) { // V[j][i] = column_data[j]; V[j][i] = dataSet.getDouble(j, colIndex); } } for (int i = 0; i < exop_a_m.length; i++) { Node node = (Node) exop_a_m[i]; String name = node.getName(); Node variable = dataSet.getVariable(name); int colIndex = dataSet.getVariables().indexOf(variable); // Column column = dataSet.getColumnObject(variable); // double column_data[] = (double[]) column.getRawData(); for (int j = 0; j < n; j++) { // V[j][endp_a_m.length + i] = column_data[j]; V[j][endp_a_m.length + i] = dataSet.getDouble(j, colIndex); } } double yi[] = new double[n]; if (lx.contains(current)) { int position = lx.indexOf(current); Node node = mx1.get(position); String name = node.getName(); Node variable = dataSet.getVariable(name); int colIndex = dataSet.getVariables().indexOf(variable); // Column column = dataSet.getColumnObject(variable); // // System.arraycopy(column.getRawData(), 0, yi, 0, n); for (int i = 0; i < n; i++) { yi[i] = dataSet.getDouble(i, colIndex); } } else { int position = ly.indexOf(current); Node node = my1.get(position); String name = node.getName(); Node variable = dataSet.getVariable(name); int colIndex = dataSet.getVariables().indexOf(variable); // System.arraycopy(dataSet.getColumnObject(variable).getRawData(), 0, yi, 0, // n); for (int i = 0; i < n; i++) { yi[i] = dataSet.getDouble(i, colIndex); } } // Build Z_hat double Z_hat[][] = MatrixUtils.product( V, MatrixUtils.product( MatrixUtils.inverse(MatrixUtils.product(MatrixUtils.transpose(V), V)), MatrixUtils.product(MatrixUtils.transpose(V), Z))); A_hat = MatrixUtils.product( MatrixUtils.inverse(MatrixUtils.product(MatrixUtils.transpose(Z_hat), Z_hat)), MatrixUtils.product(MatrixUtils.transpose(Z_hat), yi)); // Set the edge for the fixed measurement int position = ly.indexOf(current); semIm.setParamValue(current, my1.get(position), 1.); // Set the edge for the latents for (int i = 0; i < endp_a.length; i++) { semIm.setParamValue((Node) endp_a[i], current, A_hat[i]); } for (int i = 0; i < exop_a.length; i++) { semIm.setParamValue((Node) exop_a[i], current, A_hat[endp_a.length + i]); } if (nodeName != null && nodeName.equals(current.getName())) { computeAsymptLatentCovar(yi, A_hat, Z, Z_hat, dataSet.getNumRows()); break; } } // ------------------------------------------------------------------ // Estimate freeParameters of the measurement model // Set the edges of the fixed measurements of exogenous for (Node current : lx) { int position = lx.indexOf(current); semIm.setParamValue(current, mx1.get(position), 1.); } for (Node current : observed) { if (nodeName != null && !nodeName.equals(current.getName())) { continue; } if (mx1.contains(current) || my1.contains(current)) { continue; } // First, get the parent of this observed Node current_latent = null; for (Node node : semGraph.getParents(current)) { if (node.getNodeType() == NodeType.ERROR) { continue; } current_latent = node; } Iterator<Node> children = semGraph.getChildren(current_latent).iterator(); List<Node> other_measures = new LinkedList<Node>(); Node fixed_measurement; while (children.hasNext()) { Node next = children.next(); if ((next.getNodeType() == NodeType.MEASURED) && next != current) { other_measures.add(next); } } if (lx.contains(current_latent)) { int position = lx.indexOf(current_latent); other_measures.remove(mx1.get(position)); fixed_measurement = mx1.get(position); } else { int position = ly.indexOf(current_latent); other_measures.remove(my1.get(position)); fixed_measurement = my1.get(position); } // Regress other_measures over the fixed measurement x1 (y1) correspondent // to the measurement variable that is being evaluated int n = dataSet.getNumRows(), c = other_measures.size(); if (c == 0) { continue; } double Z[][] = new double[n][c]; for (int i = 0; i < c; i++) { Node variable = dataSet.getVariable((other_measures.get(i)).getName()); int varIndex = dataSet.getVariables().indexOf(variable); // Column column = dataSet.getColumnObject(variable); // double column_data[] = (double[]) column.getRawData(); for (int j = 0; j < n; j++) { // Z[j][i] = column_data[j]; Z[j][i] = dataSet.getDouble(varIndex, j); } } // Build C, the column matrix containing the data for the fixed // measurement associated with the only latent parent of the getModel // observed node (as assumed by the structure of our measurement model). Node variable = dataSet.getVariable(fixed_measurement.getName()); int colIndex = dataSet.getVariables().indexOf(variable); // Column column = dataSet.getColumnObject(variable); // double C[] = (double[]) column.getRawData(); double[] C = new double[dataSet.getNumRows()]; for (int i = 0; i < dataSet.getNumRows(); i++) { C[i] = dataSet.getDouble(colIndex, i); } // Build V, the matrix containing the data for the other measurements // associated with the parents of the (latent) parent of getModel // observed node. The only difference with respect to the estimation // of the within-latent coefficients is that here we only include // the other measurements attached to the parent of the getModel node, // assuming that the error term of the getModel node is independent // of the error term of the others and that each measurement is // taken with respect to only one latent. n = dataSet.getNumRows(); c = other_measures.size(); double V[][] = new double[n][c]; for (int i = 0; i < c; i++) { Node variable2 = dataSet.getVariable((other_measures.get(i)).getName()); int var2index = dataSet.getVariables().indexOf(variable2); // Column column = dataSet.getColumnObject(variable2); // double column_data[] = (double[]) column.getRawData(); for (int j = 0; j < n; j++) { // V[j][i] = column_data[j]; V[j][i] = dataSet.getDouble(j, var2index); } } double yi[] = new double[n]; Node variable3 = dataSet.getVariable((current).getName()); int var3Index = dataSet.getVariables().indexOf(variable3); for (int i = 0; i < n; i++) { yi[i] = dataSet.getDouble(i, var3Index); } // Object rawData = dataSet.getColumnObject(variable3).getRawData(); // System.arraycopy(rawData, 0, yi, 0, n); double C_hat[] = MatrixUtils.product( V, MatrixUtils.product( MatrixUtils.inverse(MatrixUtils.product(MatrixUtils.transpose(V), V)), MatrixUtils.product(MatrixUtils.transpose(V), C))); double A_hat = MatrixUtils.innerProduct( MatrixUtils.scalarProduct(1. / MatrixUtils.innerProduct(C_hat, C_hat), C_hat), yi); // Set the edge for the getModel measurement semIm.setParamValue(current_latent, current, A_hat); } return semIm; }
private void initialize() { DirichletBayesIm prior = DirichletBayesIm.symmetricDirichletIm(bayesPmObs, 0.5); observedIm = DirichletEstimator.estimate(prior, dataSet); // MLBayesEstimator dirichEst = new MLBayesEstimator(); // observedIm = dirichEst.estimate(bayesPmObs, dataSet); // System.out.println("Estimated Bayes IM for Measured Variables: "); // System.out.println(observedIm); // mixedData should be ddsNm with new columns for the latent variables. // Each such column should contain missing data for each case. int numFullCases = dataSet.getNumRows(); List<Node> variables = new LinkedList<Node>(); for (Node node : nodes) { if (node.getNodeType() == NodeType.LATENT) { int numCategories = bayesPm.getNumCategories(node); DiscreteVariable latentVar = new DiscreteVariable(node.getName(), numCategories); variables.add(latentVar); } else { String name = bayesPm.getVariable(node).getName(); Node variable = dataSet.getVariable(name); variables.add(variable); } } DataSet dsMixed = new ColtDataSet(numFullCases, variables); for (int j = 0; j < nodes.length; j++) { if (nodes[j].getNodeType() == NodeType.LATENT) { for (int i = 0; i < numFullCases; i++) { dsMixed.setInt(i, j, -99); } } else { String name = bayesPm.getVariable(nodes[j]).getName(); Node variable = dataSet.getVariable(name); int index = dataSet.getColumn(variable); for (int i = 0; i < numFullCases; i++) { dsMixed.setInt(i, j, dataSet.getInt(i, index)); } } } // System.out.println(dsMixed); mixedData = dsMixed; allVariables = mixedData.getVariables(); // Find the bayes net which is parameterized using mixedData or set randomly when that's // not possible. estimateIM(bayesPm, mixedData); // The following DEBUG section tests a case specified by P. Spirtes // DEBUG TAIL: For use with embayes_l1x1x2x3V3.dat /* Node l1Node = graph.getNode("L1"); //int l1Index = bayesImMixed.getNodeIndex(l1Node); int l1index = estimatedIm.getNodeIndex(l1Node); Node x1Node = graph.getNode("X1"); //int x1Index = bayesImMixed.getNodeIndex(x1Node); int x1Index = estimatedIm.getNodeIndex(x1Node); Node x2Node = graph.getNode("X2"); //int x2Index = bayesImMixed.getNodeIndex(x2Node); int x2Index = estimatedIm.getNodeIndex(x2Node); Node x3Node = graph.getNode("X3"); //int x3Index = bayesImMixed.getNodeIndex(x3Node); int x3Index = estimatedIm.getNodeIndex(x3Node); estimatedIm.setProbability(l1index, 0, 0, 0.5); estimatedIm.setProbability(l1index, 0, 1, 0.5); //bayesImMixed.setProbability(x1Index, 0, 0, 0.33333); //bayesImMixed.setProbability(x1Index, 0, 1, 0.66667); estimatedIm.setProbability(x1Index, 0, 0, 0.6); //p(x1 = 0 | l1 = 0) estimatedIm.setProbability(x1Index, 0, 1, 0.4); //p(x1 = 1 | l1 = 0) estimatedIm.setProbability(x1Index, 1, 0, 0.4); //p(x1 = 0 | l1 = 1) estimatedIm.setProbability(x1Index, 1, 1, 0.6); //p(x1 = 1 | l1 = 1) //bayesImMixed.setProbability(x2Index, 1, 0, 0.66667); //bayesImMixed.setProbability(x2Index, 1, 1, 0.33333); estimatedIm.setProbability(x2Index, 1, 0, 0.4); //p(x2 = 0 | l1 = 1) estimatedIm.setProbability(x2Index, 1, 1, 0.6); //p(x2 = 1 | l1 = 1) estimatedIm.setProbability(x2Index, 0, 0, 0.6); //p(x2 = 0 | l1 = 0) estimatedIm.setProbability(x2Index, 0, 1, 0.4); //p(x2 = 1 | l1 = 0) //bayesImMixed.setProbability(x3Index, 1, 0, 0.66667); //bayesImMixed.setProbability(x3Index, 1, 1, 0.33333); estimatedIm.setProbability(x3Index, 1, 0, 0.4); //p(x3 = 0 | l1 = 1) estimatedIm.setProbability(x3Index, 1, 1, 0.6); //p(x3 = 1 | l1 = 1) estimatedIm.setProbability(x3Index, 0, 0, 0.6); //p(x3 = 0 | l1 = 0) estimatedIm.setProbability(x3Index, 0, 1, 0.4); //p(x3 = 1 | l1 = 0) */ // END of TAIL // System.out.println("bayes IM estimated by estimateIM"); // System.out.println(bayesImMixed); // System.out.println(estimatedIm); estimatedCounts = new double[nodes.length][][]; estimatedCountsDenom = new double[nodes.length][]; condProbs = new double[nodes.length][][]; for (int i = 0; i < nodes.length; i++) { // int numRows = bayesImMixed.getNumRows(i); int numRows = estimatedIm.getNumRows(i); estimatedCounts[i] = new double[numRows][]; estimatedCountsDenom[i] = new double[numRows]; condProbs[i] = new double[numRows][]; // for(int j = 0; j < bayesImMixed.getNumRows(i); j++) { for (int j = 0; j < estimatedIm.getNumRows(i); j++) { // int numCols = bayesImMixed.getNumColumns(i); int numCols = estimatedIm.getNumColumns(i); estimatedCounts[i][j] = new double[numCols]; condProbs[i][j] = new double[numCols]; } } }
public final DataSet filter(DataSet dataSet) { // Why does it have to be discrete? Why can't we simply expand // whatever discrete columns are there and leave the continuous // ones untouched? jdramsey 7/4/2005 // if (!(dataSet.isDiscrete())) { // throw new IllegalArgumentException("Data set must be discrete."); // } List<Node> variables = new LinkedList<>(); // Add all of the variables to the new data set. for (int j = 0; j < dataSet.getNumColumns(); j++) { Node _var = dataSet.getVariable(j); if (!(_var instanceof DiscreteVariable)) { variables.add(_var); continue; } DiscreteVariable variable = (DiscreteVariable) _var; String oldName = variable.getName(); List<String> oldCategories = variable.getCategories(); List<String> newCategories = new LinkedList<>(oldCategories); String newCategory = "Missing"; int _j = 0; while (oldCategories.contains(newCategory)) { newCategory = "Missing" + (++_j); } newCategories.add(newCategory); String newName = oldName + "+"; DiscreteVariable newVariable = new DiscreteVariable(newName, newCategories); variables.add(newVariable); } DataSet newDataSet = new ColtDataSet(dataSet.getNumRows(), variables); // Copy old values to new data set, replacing missing values with new // "MissingValue" categories. for (int j = 0; j < dataSet.getNumColumns(); j++) { Node _var = dataSet.getVariable(j); if (_var instanceof ContinuousVariable) { for (int i = 0; i < dataSet.getNumRows(); i++) { newDataSet.setDouble(i, j, dataSet.getDouble(i, j)); } } else if (_var instanceof DiscreteVariable) { DiscreteVariable variable = (DiscreteVariable) _var; int numCategories = variable.getNumCategories(); for (int i = 0; i < dataSet.getNumRows(); i++) { int value = dataSet.getInt(i, j); if (value == DiscreteVariable.MISSING_VALUE) { newDataSet.setInt(i, j, numCategories); } else { newDataSet.setInt(i, j, value); } } } } return newDataSet; }