/** Compute and print a posterior marginal distribution for the InferenceGraph. */ protected void print_marginal(PrintStream pstream, InferenceGraph ig, String queried_variable) { if (algorithm_type == ALGORITHM_VARIABLE_ELIMINATION) ig.print_marginal(pstream, queried_variable, false, what_to_show_bucket_tree_state); else if (algorithm_type == ALGORITHM_BUCKET_TREE) ig.print_marginal(pstream, queried_variable, true, what_to_show_bucket_tree_state); else return; }
/** Save the network. */ public boolean save(String filename) { InferenceGraph ig = get_inference_graph(); if (filename == null) { jb.appendText("\n Filename invalid!"); return (false); } if (ig == null) { jb.appendText("\n No Bayesian network to be saved.\n\n"); return (false); } try { FileOutputStream fileout = new FileOutputStream(filename); PrintStream out = new PrintStream(fileout); switch (save_format) { case BIF_FORMAT: ig.save_bif(out); break; case XML_FORMAT: ig.save_xml(out); break; case BUGS_FORMAT: ig.save_bugs(out); break; } out.close(); fileout.close(); } catch (IOException e) { jb.appendText("Exception: " + e + "\n"); return (false); } return (true); }
/** Compute and print the metrics for sensitivity analysis of the InferenceGraph. */ protected void print_sensitivity_analysis(PrintStream pstream, InferenceGraph ig) { ig.print_sensitivity_analysis(pstream); }
/** Compute and print a full explanation for the InferenceGraph. */ protected void print_full_explanation(PrintStream pstream, InferenceGraph ig) { ig.print_full_explanation(pstream, what_to_show_bucket_tree_state); }
/** Print the QuasiBayesNet in the InferenceGraph. */ protected void print_bayes_net(PrintStream pstream, InferenceGraph ig) { ig.print_bayes_net(pstream); }