@Override public void doWork() throws OperatorException { ExampleSet exampleSet = exampleSetInput.getData(ExampleSet.class); // only use numeric attributes Tools.onlyNumericalAttributes(exampleSet, "KernelPCA"); Tools.onlyNonMissingValues(exampleSet, getOperatorClassName(), this); Attributes attributes = exampleSet.getAttributes(); int numberOfExamples = exampleSet.size(); // calculating means for later zero centering exampleSet.recalculateAllAttributeStatistics(); double[] means = new double[exampleSet.getAttributes().size()]; int i = 0; for (Attribute attribute : exampleSet.getAttributes()) { means[i] = exampleSet.getStatistics(attribute, Statistics.AVERAGE); i++; } // kernel Kernel kernel = Kernel.createKernel(this); // copying zero centered exampleValues ArrayList<double[]> exampleValues = new ArrayList<double[]>(numberOfExamples); i = 0; for (Example columnExample : exampleSet) { double[] columnValues = getAttributeValues(columnExample, attributes, means); exampleValues.add(columnValues); i++; } // filling kernel matrix Matrix kernelMatrix = new Matrix(numberOfExamples, numberOfExamples); for (i = 0; i < numberOfExamples; i++) { for (int j = 0; j < numberOfExamples; j++) { kernelMatrix.set( i, j, kernel.calculateDistance(exampleValues.get(i), exampleValues.get(j))); } } // calculating eigenVectors EigenvalueDecomposition eig = kernelMatrix.eig(); Model model = new KernelPCAModel(exampleSet, means, eig.getV(), exampleValues, kernel); if (exampleSetOutput.isConnected()) { exampleSetOutput.deliver(model.apply(exampleSet)); } originalOutput.deliver(exampleSet); modelOutput.deliver(model); }
@Override public void init(ExampleSet exampleSet) throws OperatorException { super.init(exampleSet); Tools.onlyNumericalAttributes(exampleSet, "value based similarities"); Attributes attributes = exampleSet.getAttributes(); if (attributes.size() != 1) throw new OperatorException( "The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence."); for (Example example : exampleSet) { for (Attribute attribute : attributes) { if (example.getValue(attribute) <= 0) throw new OperatorException( "The bregman divergence you've choosen is not applicable for the dataset! Proceeding with the 'Squared Euclidean distance' bregman divergence."); ; } } }
@Override public void init(ExampleSet exampleSet) throws OperatorException { super.init(exampleSet); Tools.onlyNumericalAttributes(exampleSet, "value based similarities"); }