/** * Uploads the lights in the light list as two uniform arrays.<br> * <br> * * * * <p><code>uniform vec4 g_LightColor[numLights];</code><br> * // g_LightColor.rgb is the diffuse/specular color of the light.<br> * // g_Lightcolor.a is the type of light, 0 = Directional, 1 = Point, <br> * // 2 = Spot. <br> * <br> * <code>uniform vec4 g_LightPosition[numLights];</code><br> * // g_LightPosition.xyz is the position of the light (for point lights)<br> * // or the direction of the light (for directional lights).<br> * // g_LightPosition.w is the inverse radius (1/r) of the light (for attenuation) <br> */ protected void updateLightListUniforms(Shader shader, Geometry g, int numLights) { if (numLights == 0) { // this shader does not do lighting, ignore. return; } LightList lightList = g.getWorldLightList(); Uniform lightColor = shader.getUniform("g_LightColor"); Uniform lightPos = shader.getUniform("g_LightPosition"); Uniform lightDir = shader.getUniform("g_LightDirection"); lightColor.setVector4Length(numLights); lightPos.setVector4Length(numLights); lightDir.setVector4Length(numLights); Uniform ambientColor = shader.getUniform("g_AmbientLightColor"); ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList)); int lightIndex = 0; for (int i = 0; i < numLights; i++) { if (lightList.size() <= i) { lightColor.setVector4InArray(0f, 0f, 0f, 0f, lightIndex); lightPos.setVector4InArray(0f, 0f, 0f, 0f, lightIndex); } else { Light l = lightList.get(i); ColorRGBA color = l.getColor(); lightColor.setVector4InArray( color.getRed(), color.getGreen(), color.getBlue(), l.getType().getId(), i); switch (l.getType()) { case Directional: DirectionalLight dl = (DirectionalLight) l; Vector3f dir = dl.getDirection(); lightPos.setVector4InArray(dir.getX(), dir.getY(), dir.getZ(), -1, lightIndex); break; case Point: PointLight pl = (PointLight) l; Vector3f pos = pl.getPosition(); float invRadius = pl.getInvRadius(); lightPos.setVector4InArray(pos.getX(), pos.getY(), pos.getZ(), invRadius, lightIndex); break; case Spot: SpotLight sl = (SpotLight) l; Vector3f pos2 = sl.getPosition(); Vector3f dir2 = sl.getDirection(); float invRange = sl.getInvSpotRange(); float spotAngleCos = sl.getPackedAngleCos(); lightPos.setVector4InArray(pos2.getX(), pos2.getY(), pos2.getZ(), invRange, lightIndex); lightDir.setVector4InArray( dir2.getX(), dir2.getY(), dir2.getZ(), spotAngleCos, lightIndex); break; case Ambient: // skip this light. Does not increase lightIndex continue; default: throw new UnsupportedOperationException("Unknown type of light: " + l.getType()); } } lightIndex++; } while (lightIndex < numLights) { lightColor.setVector4InArray(0f, 0f, 0f, 0f, lightIndex); lightPos.setVector4InArray(0f, 0f, 0f, 0f, lightIndex); lightIndex++; } }
protected void renderMultipassLighting(Shader shader, Geometry g, RenderManager rm) { Renderer r = rm.getRenderer(); LightList lightList = g.getWorldLightList(); Uniform lightDir = shader.getUniform("g_LightDirection"); Uniform lightColor = shader.getUniform("g_LightColor"); Uniform lightPos = shader.getUniform("g_LightPosition"); Uniform ambientColor = shader.getUniform("g_AmbientLightColor"); boolean isFirstLight = true; boolean isSecondLight = false; for (int i = 0; i < lightList.size(); i++) { Light l = lightList.get(i); if (l instanceof AmbientLight) { continue; } if (isFirstLight) { // set ambient color for first light only ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList)); isFirstLight = false; isSecondLight = true; } else if (isSecondLight) { ambientColor.setValue(VarType.Vector4, ColorRGBA.Black); // apply additive blending for 2nd and future lights r.applyRenderState(additiveLight); isSecondLight = false; } TempVars vars = TempVars.get(); Quaternion tmpLightDirection = vars.quat1; Quaternion tmpLightPosition = vars.quat2; ColorRGBA tmpLightColor = vars.color; Vector4f tmpVec = vars.vect4f; ColorRGBA color = l.getColor(); tmpLightColor.set(color); tmpLightColor.a = l.getType().getId(); lightColor.setValue(VarType.Vector4, tmpLightColor); switch (l.getType()) { case Directional: DirectionalLight dl = (DirectionalLight) l; Vector3f dir = dl.getDirection(); tmpLightPosition.set(dir.getX(), dir.getY(), dir.getZ(), -1); lightPos.setValue(VarType.Vector4, tmpLightPosition); tmpLightDirection.set(0, 0, 0, 0); lightDir.setValue(VarType.Vector4, tmpLightDirection); break; case Point: PointLight pl = (PointLight) l; Vector3f pos = pl.getPosition(); float invRadius = pl.getInvRadius(); tmpLightPosition.set(pos.getX(), pos.getY(), pos.getZ(), invRadius); lightPos.setValue(VarType.Vector4, tmpLightPosition); tmpLightDirection.set(0, 0, 0, 0); lightDir.setValue(VarType.Vector4, tmpLightDirection); break; case Spot: SpotLight sl = (SpotLight) l; Vector3f pos2 = sl.getPosition(); Vector3f dir2 = sl.getDirection(); float invRange = sl.getInvSpotRange(); float spotAngleCos = sl.getPackedAngleCos(); tmpLightPosition.set(pos2.getX(), pos2.getY(), pos2.getZ(), invRange); lightPos.setValue(VarType.Vector4, tmpLightPosition); // We transform the spot directoin in view space here to save 5 varying later in the // lighting shader // one vec4 less and a vec4 that becomes a vec3 // the downside is that spotAngleCos decoding happen now in the frag shader. tmpVec.set(dir2.getX(), dir2.getY(), dir2.getZ(), 0); rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec); tmpLightDirection.set(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), spotAngleCos); lightDir.setValue(VarType.Vector4, tmpLightDirection); break; default: throw new UnsupportedOperationException("Unknown type of light: " + l.getType()); } vars.release(); r.setShader(shader); r.renderMesh(g.getMesh(), g.getLodLevel(), 1); } if (isFirstLight && lightList.size() > 0) { // There are only ambient lights in the scene. Render // a dummy "normal light" so we can see the ambient ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList)); lightColor.setValue(VarType.Vector4, ColorRGBA.BlackNoAlpha); lightPos.setValue(VarType.Vector4, nullDirLight); r.setShader(shader); r.renderMesh(g.getMesh(), g.getLodLevel(), 1); } }
/** * Called by {@link RenderManager} to render the geometry by using this material. * * <p>The material is rendered as follows: * * <ul> * <li>Determine which technique to use to render the material - either what the user selected * via {@link #selectTechnique(java.lang.String, com.jme3.renderer.RenderManager) * Material.selectTechnique()}, or the first default technique that the renderer supports * (based on the technique's {@link TechniqueDef#getRequiredCaps() requested rendering * capabilities}) * <ul> * <li>If the technique has been changed since the last frame, then it is notified via * {@link Technique#makeCurrent(com.jme3.asset.AssetManager, boolean, * java.util.EnumSet) Technique.makeCurrent()}. If the technique wants to use a shader * to render the model, it should load it at this part - the shader should have all * the proper defines as declared in the technique definition, including those that * are bound to material parameters. The technique can re-use the shader from the last * frame if no changes to the defines occurred. * </ul> * <li>Set the {@link RenderState} to use for rendering. The render states are applied in this * order (later RenderStates override earlier RenderStates): * <ol> * <li>{@link TechniqueDef#getRenderState() Technique Definition's RenderState} - i.e. * specific renderstate that is required for the shader. * <li>{@link #getAdditionalRenderState() Material Instance Additional RenderState} - i.e. * ad-hoc renderstate set per model * <li>{@link RenderManager#getForcedRenderState() RenderManager's Forced RenderState} - * i.e. renderstate requested by a {@link com.jme3.post.SceneProcessor} or * post-processing filter. * </ol> * <li>If the technique {@link TechniqueDef#isUsingShaders() uses a shader}, then the uniforms * of the shader must be updated. * <ul> * <li>Uniforms bound to material parameters are updated based on the current material * parameter values. * <li>Uniforms bound to world parameters are updated from the RenderManager. Internally * {@link UniformBindingManager} is used for this task. * <li>Uniforms bound to textures will cause the texture to be uploaded as necessary. The * uniform is set to the texture unit where the texture is bound. * </ul> * <li>If the technique uses a shader, the model is then rendered according to the lighting mode * specified on the technique definition. * <ul> * <li>{@link LightMode#SinglePass single pass light mode} fills the shader's light * uniform arrays with the first 4 lights and renders the model once. * <li>{@link LightMode#MultiPass multi pass light mode} light mode renders the model * multiple times, for the first light it is rendered opaque, on subsequent lights it * is rendered with {@link BlendMode#AlphaAdditive alpha-additive} blending and depth * writing disabled. * </ul> * <li>For techniques that do not use shaders, fixed function OpenGL is used to render the model * (see {@link GL1Renderer} interface): * <ul> * <li>OpenGL state ({@link FixedFuncBinding}) that is bound to material parameters is * updated. * <li>The texture set on the material is uploaded and bound. Currently only 1 texture is * supported for fixed function techniques. * <li>If the technique uses lighting, then OpenGL lighting state is updated based on the * light list on the geometry, otherwise OpenGL lighting is disabled. * <li>The mesh is uploaded and rendered. * </ul> * </ul> * * @param geom The geometry to render * @param rm The render manager requesting the rendering */ public void render(Geometry geom, RenderManager rm) { autoSelectTechnique(rm); Renderer r = rm.getRenderer(); TechniqueDef techDef = technique.getDef(); if (techDef.getLightMode() == LightMode.MultiPass && geom.getWorldLightList().size() == 0) { return; } if (rm.getForcedRenderState() != null) { r.applyRenderState(rm.getForcedRenderState()); } else { if (techDef.getRenderState() != null) { r.applyRenderState( techDef.getRenderState().copyMergedTo(additionalState, mergedRenderState)); } else { r.applyRenderState(RenderState.DEFAULT.copyMergedTo(additionalState, mergedRenderState)); } } // update camera and world matrices // NOTE: setWorldTransform should have been called already if (techDef.isUsingShaders()) { // reset unchanged uniform flag clearUniformsSetByCurrent(technique.getShader()); rm.updateUniformBindings(technique.getWorldBindUniforms()); } // setup textures and uniforms for (int i = 0; i < paramValues.size(); i++) { MatParam param = paramValues.getValue(i); param.apply(r, technique); } Shader shader = technique.getShader(); // send lighting information, if needed switch (techDef.getLightMode()) { case Disable: r.setLighting(null); break; case SinglePass: updateLightListUniforms(shader, geom, 4); break; case FixedPipeline: r.setLighting(geom.getWorldLightList()); break; case MultiPass: // NOTE: Special case! resetUniformsNotSetByCurrent(shader); renderMultipassLighting(shader, geom, rm); // very important, notice the return statement! return; } // upload and bind shader if (techDef.isUsingShaders()) { // any unset uniforms will be set to 0 resetUniformsNotSetByCurrent(shader); r.setShader(shader); } r.renderMesh(geom.getMesh(), geom.getLodLevel(), 1); }