@Override public DeterministicKeyChain toDecrypted(KeyParameter aesKey) { checkState(getKeyCrypter() != null, "Key chain not encrypted"); checkState(seed != null, "Can't decrypt a watching chain"); checkState(seed.isEncrypted()); String passphrase = DEFAULT_PASSPHRASE_FOR_MNEMONIC; // FIXME allow non-empty passphrase DeterministicSeed decSeed = seed.decrypt(getKeyCrypter(), passphrase, aesKey); DeterministicKeyChain chain = new DeterministicKeyChain(decSeed); // Now double check that the keys match to catch the case where the key is wrong but padding // didn't catch it. if (!chain.getWatchingKey().getPubKeyPoint().equals(getWatchingKey().getPubKeyPoint())) throw new KeyCrypterException("Provided AES key is wrong"); chain.lookaheadSize = lookaheadSize; // Now copy the (pubkey only) leaf keys across to avoid rederiving them. The private key bytes // are missing // anyway so there's nothing to decrypt. for (ECKey eckey : basicKeyChain.getKeys()) { DeterministicKey key = (DeterministicKey) eckey; if (key.getPath().size() != 3) continue; // Not a leaf key. checkState(key.isEncrypted()); DeterministicKey parent = chain.hierarchy.get(checkNotNull(key.getParent()).getPath(), false, false); // Clone the key to the new decrypted hierarchy. key = new DeterministicKey(key.getPubOnly(), parent); chain.hierarchy.putKey(key); chain.basicKeyChain.importKey(key); } chain.issuedExternalKeys = issuedExternalKeys; chain.issuedInternalKeys = issuedInternalKeys; return chain; }
/** * Pre-generate enough keys to reach the lookahead size, but only if there are more than the * lookaheadThreshold to be generated, so that the Bloom filter does not have to be regenerated * that often. * * <p>The returned mutable list of keys must be inserted into the basic key chain. */ private List<DeterministicKey> maybeLookAhead( DeterministicKey parent, int issued, int lookaheadSize, int lookaheadThreshold) { checkState(lock.isHeldByCurrentThread()); final int numChildren = hierarchy.getNumChildren(parent.getPath()); final int needed = issued + lookaheadSize + lookaheadThreshold - numChildren; if (needed <= lookaheadThreshold) return new ArrayList<DeterministicKey>(); log.info( "{} keys needed for {} = {} issued + {} lookahead size + {} lookahead threshold - {} num children", needed, parent.getPathAsString(), issued, lookaheadSize, lookaheadThreshold, numChildren); List<DeterministicKey> result = new ArrayList<DeterministicKey>(needed); long now = System.currentTimeMillis(); int nextChild = numChildren; for (int i = 0; i < needed; i++) { DeterministicKey key = HDKeyDerivation.deriveThisOrNextChildKey(parent, nextChild); key = key.getPubOnly(); hierarchy.putKey(key); result.add(key); nextChild = key.getChildNumber().num() + 1; } log.info("Took {} msec", System.currentTimeMillis() - now); return result; }
/** * Creates a deterministic key chain that watches the given (public only) root key. You can use * this to calculate balances and generally follow along, but spending is not possible with such a * chain. Currently you can't use this method to watch an arbitrary fragment of some other tree, * this limitation may be removed in future. */ public DeterministicKeyChain(DeterministicKey watchingKey, long creationTimeSeconds) { checkArgument(watchingKey.isPubKeyOnly(), "Private subtrees not currently supported"); checkArgument(watchingKey.getPath().size() == 1, "You can only watch an account key currently"); basicKeyChain = new BasicKeyChain(); this.creationTimeSeconds = creationTimeSeconds; this.seed = null; initializeHierarchyUnencrypted(watchingKey); }
/** Returns leaf keys issued by this chain (including lookahead zone) */ public List<DeterministicKey> getLeafKeys() { ImmutableList.Builder<DeterministicKey> keys = ImmutableList.builder(); for (ECKey key : getKeys(true)) { DeterministicKey dKey = (DeterministicKey) key; if (dKey.getPath().size() > 2) { keys.add(dKey); } } return keys.build(); }
@Override public boolean checkAESKey(KeyParameter aesKey) { checkState(rootKey != null, "Can't check password for a watching chain"); checkNotNull(aesKey); checkState(getKeyCrypter() != null, "Key chain not encrypted"); try { return rootKey.decrypt(aesKey).getPubKeyPoint().equals(rootKey.getPubKeyPoint()); } catch (KeyCrypterException e) { return false; } }
private DeterministicKey encryptNonLeaf( KeyParameter aesKey, DeterministicKeyChain chain, DeterministicKey parent, ImmutableList<ChildNumber> path) { DeterministicKey key = chain.hierarchy.get(path, false, false); key = key.encrypt(checkNotNull(basicKeyChain.getKeyCrypter()), aesKey, parent); hierarchy.putKey(key); basicKeyChain.importKey(key); return key; }
/** * Return the fingerprint of this key's parent as an int value, or zero if this key is the root * node of the key hierarchy. Raise an exception if the arguments are inconsistent. This method * exists to avoid code repetition in the constructors. */ private int ascertainParentFingerprint(DeterministicKey parentKey, int parentFingerprint) throws IllegalArgumentException { if (parentFingerprint != 0) { if (parent != null) checkArgument( parent.getFingerprint() == parentFingerprint, "parent fingerprint mismatch", Integer.toHexString(parent.getFingerprint()), Integer.toHexString(parentFingerprint)); return parentFingerprint; } else return 0; }
private void checkForBitFlip(DeterministicKey k) { DeterministicKey parent = checkNotNull(k.getParent()); byte[] rederived = HDKeyDerivation.deriveChildKeyBytesFromPublic( parent, k.getChildNumber(), HDKeyDerivation.PublicDeriveMode.WITH_INVERSION) .keyBytes; byte[] actual = k.getPubKey(); if (!Arrays.equals(rederived, actual)) throw new IllegalStateException( String.format( "Bit-flip check failed: %s vs %s", Arrays.toString(rederived), Arrays.toString(actual))); }
/** * Deserialize an HD Key. * * @param parent The parent node in the given key's deterministic hierarchy. */ public static DeterministicKey deserialize( NetworkParameters params, byte[] serializedKey, @Nullable DeterministicKey parent) { ByteBuffer buffer = ByteBuffer.wrap(serializedKey); int header = buffer.getInt(); if (header != params.getBip32HeaderPriv() && header != params.getBip32HeaderPub()) throw new IllegalArgumentException( "Unknown header bytes: " + toBase58(serializedKey).substring(0, 4)); boolean pub = header == params.getBip32HeaderPub(); int depth = buffer.get() & 0xFF; // convert signed byte to positive int since depth cannot be negative final int parentFingerprint = buffer.getInt(); final int i = buffer.getInt(); final ChildNumber childNumber = new ChildNumber(i); ImmutableList<ChildNumber> path; if (parent != null) { if (parentFingerprint == 0) throw new IllegalArgumentException("Parent was provided but this key doesn't have one"); if (parent.getFingerprint() != parentFingerprint) throw new IllegalArgumentException("Parent fingerprints don't match"); path = HDUtils.append(parent.getPath(), childNumber); if (path.size() != depth) throw new IllegalArgumentException("Depth does not match"); } else { if (depth >= 1) // We have been given a key that is not a root key, yet we lack the object representing the // parent. // This can happen when deserializing an account key for a watching wallet. In this case, // we assume that // the client wants to conceal the key's position in the hierarchy. The path is truncated // at the // parent's node. path = ImmutableList.of(childNumber); else path = ImmutableList.of(); } byte[] chainCode = new byte[32]; buffer.get(chainCode); byte[] data = new byte[33]; buffer.get(data); checkArgument(!buffer.hasRemaining(), "Found unexpected data in key"); if (pub) { return new DeterministicKey( path, chainCode, new LazyECPoint(ECKey.CURVE.getCurve(), data), parent, depth, parentFingerprint); } else { return new DeterministicKey( path, chainCode, new BigInteger(1, data), parent, depth, parentFingerprint); } }
public DeterministicKey encrypt( KeyCrypter keyCrypter, KeyParameter aesKey, @Nullable DeterministicKey newParent) throws KeyCrypterException { // Same as the parent code, except we construct a DeterministicKey instead of an ECKey. checkNotNull(keyCrypter); if (newParent != null) checkArgument(newParent.isEncrypted()); final byte[] privKeyBytes = getPrivKeyBytes(); checkState(privKeyBytes != null, "Private key is not available"); EncryptedData encryptedPrivateKey = keyCrypter.encrypt(privKeyBytes, aesKey); DeterministicKey key = new DeterministicKey( childNumberPath, chainCode, keyCrypter, pub, encryptedPrivateKey, newParent); if (newParent == null) key.setCreationTimeSeconds(getCreationTimeSeconds()); return key; }
@Override public DeterministicKey decrypt(KeyCrypter keyCrypter, KeyParameter aesKey) throws KeyCrypterException { checkNotNull(keyCrypter); // Check that the keyCrypter matches the one used to encrypt the keys, if set. if (this.keyCrypter != null && !this.keyCrypter.equals(keyCrypter)) throw new KeyCrypterException( "The keyCrypter being used to decrypt the key is different to the one that was used to encrypt it"); BigInteger privKey = findOrDeriveEncryptedPrivateKey(keyCrypter, aesKey); DeterministicKey key = new DeterministicKey(childNumberPath, chainCode, privKey, parent); if (!Arrays.equals(key.getPubKey(), getPubKey())) throw new KeyCrypterException("Provided AES key is wrong"); if (parent == null) key.setCreationTimeSeconds(getCreationTimeSeconds()); return key; }
/** * Returns this keys {@link org.bitcoinj.crypto.KeyCrypter} <b>or</b> the keycrypter of its parent * key. */ @Override @Nullable public KeyCrypter getKeyCrypter() { if (keyCrypter != null) return keyCrypter; else if (parent != null) return parent.getKeyCrypter(); else return null; }
/** * Mark the DeterministicKey as used. Also correct the issued{Internal|External}Keys counter, * because all lower children seem to be requested already. If the counter was updated, we also * might trigger lookahead. */ public DeterministicKey markKeyAsUsed(DeterministicKey k) { int numChildren = k.getChildNumber().i() + 1; if (k.getParent() == internalKey) { if (issuedInternalKeys < numChildren) { issuedInternalKeys = numChildren; maybeLookAhead(); } } else if (k.getParent() == externalKey) { if (issuedExternalKeys < numChildren) { issuedExternalKeys = numChildren; maybeLookAhead(); } } return k; }
// Derives the account path keys and inserts them into the basic key chain. This is important to // preserve their // order for serialization, amongst other things. private void initializeHierarchyUnencrypted(DeterministicKey baseKey) { if (baseKey.getPath().isEmpty()) { // baseKey is a master/root key derived directly from a seed. addToBasicChain(rootKey); hierarchy = new DeterministicHierarchy(rootKey); addToBasicChain(hierarchy.get(ACCOUNT_ZERO_PATH, false, true)); } else if (baseKey.getPath().size() == 1) { // baseKey is a "watching key" that we were given so we could follow along with this account. rootKey = null; addToBasicChain(baseKey); hierarchy = new DeterministicHierarchy(baseKey); } else { throw new IllegalArgumentException(); } externalKey = hierarchy.deriveChild(ACCOUNT_ZERO_PATH, false, false, ChildNumber.ZERO); internalKey = hierarchy.deriveChild(ACCOUNT_ZERO_PATH, false, false, ChildNumber.ONE); addToBasicChain(externalKey); addToBasicChain(internalKey); }
DeterministicKeyChain(DeterministicSeed seed, @Nullable KeyCrypter crypter) { this.seed = seed; basicKeyChain = new BasicKeyChain(crypter); if (!seed.isEncrypted()) { rootKey = HDKeyDerivation.createMasterPrivateKey(checkNotNull(seed.getSeedBytes())); rootKey.setCreationTimeSeconds(seed.getCreationTimeSeconds()); initializeHierarchyUnencrypted(rootKey); } // Else... // We can't initialize ourselves with just an encrypted seed, so we expected deserialization // code to do the // rest of the setup (loading the root key). }
/** Constructs a key from its components. This is not normally something you should use. */ public DeterministicKey( ImmutableList<ChildNumber> childNumberPath, byte[] chainCode, BigInteger priv, @Nullable DeterministicKey parent) { super(priv, compressPoint(ECKey.publicPointFromPrivate(priv))); checkArgument(chainCode.length == 32); this.parent = parent; this.childNumberPath = checkNotNull(childNumberPath); this.chainCode = Arrays.copyOf(chainCode, chainCode.length); this.depth = this.childNumberPath.size(); this.parentFingerprint = (parent != null) ? parent.getFingerprint() : 0; }
// For use in encryption. private DeterministicKeyChain( KeyCrypter crypter, KeyParameter aesKey, DeterministicKeyChain chain) { // Can't encrypt a watching chain. checkNotNull(chain.rootKey); checkNotNull(chain.seed); checkArgument(!chain.rootKey.isEncrypted(), "Chain already encrypted"); this.issuedExternalKeys = chain.issuedExternalKeys; this.issuedInternalKeys = chain.issuedInternalKeys; this.lookaheadSize = chain.lookaheadSize; this.lookaheadThreshold = chain.lookaheadThreshold; this.seed = chain.seed.encrypt(crypter, aesKey); basicKeyChain = new BasicKeyChain(crypter); // The first number is the "account number" but we don't use that feature. rootKey = chain.rootKey.encrypt(crypter, aesKey, null); hierarchy = new DeterministicHierarchy(rootKey); basicKeyChain.importKey(rootKey); DeterministicKey account = encryptNonLeaf(aesKey, chain, rootKey, ACCOUNT_ZERO_PATH); externalKey = encryptNonLeaf(aesKey, chain, account, EXTERNAL_PATH); internalKey = encryptNonLeaf(aesKey, chain, account, INTERNAL_PATH); // Now copy the (pubkey only) leaf keys across to avoid rederiving them. The private key bytes // are missing // anyway so there's nothing to encrypt. for (ECKey eckey : chain.basicKeyChain.getKeys()) { DeterministicKey key = (DeterministicKey) eckey; if (key.getPath().size() != 3) continue; // Not a leaf key. DeterministicKey parent = hierarchy.get(checkNotNull(key.getParent()).getPath(), false, false); // Clone the key to the new encrypted hierarchy. key = new DeterministicKey(key.getPubOnly(), parent); hierarchy.putKey(key); basicKeyChain.importKey(key); } }
// For internal usage only /* package */ List<ECKey> getKeys(boolean includeLookahead) { List<ECKey> keys = basicKeyChain.getKeys(); if (!includeLookahead) { int treeSize = internalKey.getPath().size(); List<ECKey> issuedKeys = new LinkedList<ECKey>(); for (ECKey key : keys) { DeterministicKey detkey = (DeterministicKey) key; DeterministicKey parent = detkey.getParent(); if (parent == null) continue; if (detkey.getPath().size() <= treeSize) continue; if (parent.equals(internalKey) && detkey.getChildNumber().i() > issuedInternalKeys) continue; if (parent.equals(externalKey) && detkey.getChildNumber().i() > issuedExternalKeys) continue; issuedKeys.add(detkey); } return issuedKeys; } return keys; }
private BigInteger derivePrivateKeyDownwards( DeterministicKey cursor, byte[] parentalPrivateKeyBytes) { DeterministicKey downCursor = new DeterministicKey( cursor.childNumberPath, cursor.chainCode, cursor.pub, new BigInteger(1, parentalPrivateKeyBytes), cursor.parent); // Now we have to rederive the keys along the path back to ourselves. That path can be found by // just truncating // our path with the length of the parents path. ImmutableList<ChildNumber> path = childNumberPath.subList(cursor.getPath().size(), childNumberPath.size()); for (ChildNumber num : path) { downCursor = HDKeyDerivation.deriveChildKey(downCursor, num); } // downCursor is now the same key as us, but with private key bytes. checkState(downCursor.pub.equals(pub)); return checkNotNull(downCursor.priv); }
@Override public List<Protos.Key> serializeToProtobuf() { lock.lock(); try { // Most of the serialization work is delegated to the basic key chain, which will serialize // the bulk of the // data (handling encryption along the way), and letting us patch it up with the extra data we // care about. LinkedList<Protos.Key> entries = newLinkedList(); if (seed != null) { Protos.Key.Builder mnemonicEntry = BasicKeyChain.serializeEncryptableItem(seed); mnemonicEntry.setType(Protos.Key.Type.DETERMINISTIC_MNEMONIC); entries.add(mnemonicEntry.build()); } Map<ECKey, Protos.Key.Builder> keys = basicKeyChain.serializeToEditableProtobufs(); for (Map.Entry<ECKey, Protos.Key.Builder> entry : keys.entrySet()) { DeterministicKey key = (DeterministicKey) entry.getKey(); Protos.Key.Builder proto = entry.getValue(); proto.setType(Protos.Key.Type.DETERMINISTIC_KEY); final Protos.DeterministicKey.Builder detKey = proto.getDeterministicKeyBuilder(); detKey.setChainCode(ByteString.copyFrom(key.getChainCode())); for (ChildNumber num : key.getPath()) detKey.addPath(num.i()); if (key.equals(externalKey)) { detKey.setIssuedSubkeys(issuedExternalKeys); detKey.setLookaheadSize(lookaheadSize); } else if (key.equals(internalKey)) { detKey.setIssuedSubkeys(issuedInternalKeys); detKey.setLookaheadSize(lookaheadSize); } // Flag the very first key of following keychain. if (entries.isEmpty() && isFollowing()) { detKey.setIsFollowing(true); } if (key.getParent() != null) { // HD keys inherit the timestamp of their parent if they have one, so no need to serialize // it. proto.clearCreationTimestamp(); } entries.add(proto.build()); } return entries; } finally { lock.unlock(); } }
/** * The creation time of a deterministic key is equal to that of its parent, unless this key is the * root of a tree in which case the time is stored alongside the key as per normal, see {@link * org.bitcoinj.core.ECKey#getCreationTimeSeconds()}. */ @Override public long getCreationTimeSeconds() { if (parent != null) return parent.getCreationTimeSeconds(); else return super.getCreationTimeSeconds(); }
/** Returns freshly derived key/s that have not been returned by this method before. */ @Override public List<DeterministicKey> getKeys(KeyPurpose purpose, int numberOfKeys) { checkArgument(numberOfKeys > 0); lock.lock(); try { DeterministicKey parentKey; int index; switch (purpose) { // Map both REFUND and RECEIVE_KEYS to the same branch for now. Refunds are a feature of // the BIP 70 // payment protocol. Later we may wish to map it to a different branch (in a new wallet // version?). // This would allow a watching wallet to only be able to see inbound payments, but not // change // (i.e. spends) or refunds. Might be useful for auditing ... case RECEIVE_FUNDS: case REFUND: issuedExternalKeys += numberOfKeys; index = issuedExternalKeys; parentKey = externalKey; break; case AUTHENTICATION: case CHANGE: issuedInternalKeys += numberOfKeys; index = issuedInternalKeys; parentKey = internalKey; break; default: throw new UnsupportedOperationException(); } // Optimization: potentially do a very quick key generation for just the number of keys we // need if we // didn't already create them, ignoring the configured lookahead size. This ensures we'll be // able to // retrieve the keys in the following loop, but if we're totally fresh and didn't get a chance // to // calculate the lookahead keys yet, this will not block waiting to calculate 100+ EC point // multiplies. // On slow/crappy Android phones looking ahead 100 keys can take ~5 seconds but the OS will // kill us // if we block for just one second on the UI thread. Because UI threads may need an address in // order // to render the screen, we need getKeys to be fast even if the wallet is totally brand new // and lookahead // didn't happen yet. // // It's safe to do this because when a network thread tries to calculate a Bloom filter, we'll // go ahead // and calculate the full lookahead zone there, so network requests will always use the right // amount. List<DeterministicKey> lookahead = maybeLookAhead(parentKey, index, 0, 0); basicKeyChain.importKeys(lookahead); List<DeterministicKey> keys = new ArrayList<DeterministicKey>(numberOfKeys); for (int i = 0; i < numberOfKeys; i++) { ImmutableList<ChildNumber> path = HDUtils.append(parentKey.getPath(), new ChildNumber(index - numberOfKeys + i, false)); DeterministicKey k = hierarchy.get(path, false, false); // Just a last minute sanity check before we hand the key out to the app for usage. This // isn't inspired // by any real problem reports from bitcoinj users, but I've heard of cases via the // grapevine of // places that lost money due to bitflips causing addresses to not match keys. Of course in // an // environment with flaky RAM there's no real way to always win: bitflips could be // introduced at any // other layer. But as we're potentially retrieving from long term storage here, check // anyway. checkForBitFlip(k); keys.add(k); } return keys; } finally { lock.unlock(); } }
/** * Returns all the key chains found in the given list of keys. Typically there will only be one, * but in the case of key rotation it can happen that there are multiple chains found. */ public static List<DeterministicKeyChain> fromProtobuf( List<Protos.Key> keys, @Nullable KeyCrypter crypter) throws UnreadableWalletException { List<DeterministicKeyChain> chains = newLinkedList(); DeterministicSeed seed = null; DeterministicKeyChain chain = null; int lookaheadSize = -1; for (Protos.Key key : keys) { final Protos.Key.Type t = key.getType(); if (t == Protos.Key.Type.DETERMINISTIC_MNEMONIC) { if (chain != null) { checkState(lookaheadSize >= 0); chain.setLookaheadSize(lookaheadSize); chain.maybeLookAhead(); chains.add(chain); chain = null; } long timestamp = key.getCreationTimestamp() / 1000; String passphrase = DEFAULT_PASSPHRASE_FOR_MNEMONIC; // FIXME allow non-empty passphrase if (key.hasSecretBytes()) { seed = new DeterministicSeed(key.getSecretBytes().toStringUtf8(), passphrase, timestamp); } else if (key.hasEncryptedData()) { EncryptedData data = new EncryptedData( key.getEncryptedData().getInitialisationVector().toByteArray(), key.getEncryptedData().getEncryptedPrivateKey().toByteArray()); seed = new DeterministicSeed(data, timestamp); } else { throw new UnreadableWalletException("Malformed key proto: " + key.toString()); } if (log.isDebugEnabled()) log.debug("Deserializing: DETERMINISTIC_MNEMONIC: {}", seed); } else if (t == Protos.Key.Type.DETERMINISTIC_KEY) { if (!key.hasDeterministicKey()) throw new UnreadableWalletException( "Deterministic key missing extra data: " + key.toString()); byte[] chainCode = key.getDeterministicKey().getChainCode().toByteArray(); // Deserialize the path through the tree. LinkedList<ChildNumber> path = newLinkedList(); for (int i : key.getDeterministicKey().getPathList()) path.add(new ChildNumber(i)); // Deserialize the public key and path. ECPoint pubkey = ECKey.CURVE.getCurve().decodePoint(key.getPublicKey().toByteArray()); final ImmutableList<ChildNumber> immutablePath = ImmutableList.copyOf(path); // Possibly create the chain, if we didn't already do so yet. boolean isWatchingAccountKey = false; boolean isFollowingKey = false; // save previous chain if any if the key is marked as following. Current key and the next // ones are to be // placed in new following key chain if (key.getDeterministicKey().getIsFollowing()) { if (chain != null) { checkState(lookaheadSize >= 0); chain.setLookaheadSize(lookaheadSize); chain.maybeLookAhead(); chains.add(chain); chain = null; seed = null; } isFollowingKey = true; } if (chain == null) { if (seed == null) { DeterministicKey accountKey = new DeterministicKey(immutablePath, chainCode, pubkey, null, null); if (!accountKey.getPath().equals(ACCOUNT_ZERO_PATH)) throw new UnreadableWalletException( "Expecting account key but found key with path: " + HDUtils.formatPath(accountKey.getPath())); chain = new DeterministicKeyChain(accountKey, isFollowingKey); isWatchingAccountKey = true; } else { chain = new DeterministicKeyChain(seed, crypter); chain.lookaheadSize = LAZY_CALCULATE_LOOKAHEAD; // If the seed is encrypted, then the chain is incomplete at this point. However, we // will load // it up below as we parse in the keys. We just need to check at the end that we've // loaded // everything afterwards. } } // Find the parent key assuming this is not the root key, and not an account key for a // watching chain. DeterministicKey parent = null; if (!path.isEmpty() && !isWatchingAccountKey) { ChildNumber index = path.removeLast(); parent = chain.hierarchy.get(path, false, false); path.add(index); } DeterministicKey detkey; if (key.hasSecretBytes()) { // Not encrypted: private key is available. final BigInteger priv = new BigInteger(1, key.getSecretBytes().toByteArray()); detkey = new DeterministicKey(immutablePath, chainCode, pubkey, priv, parent); } else { if (key.hasEncryptedData()) { Protos.EncryptedData proto = key.getEncryptedData(); EncryptedData data = new EncryptedData( proto.getInitialisationVector().toByteArray(), proto.getEncryptedPrivateKey().toByteArray()); checkNotNull(crypter, "Encountered an encrypted key but no key crypter provided"); detkey = new DeterministicKey(immutablePath, chainCode, crypter, pubkey, data, parent); } else { // No secret key bytes and key is not encrypted: either a watching key or private key // bytes // will be rederived on the fly from the parent. detkey = new DeterministicKey(immutablePath, chainCode, pubkey, null, parent); } } if (key.hasCreationTimestamp()) detkey.setCreationTimeSeconds(key.getCreationTimestamp() / 1000); if (log.isDebugEnabled()) log.debug("Deserializing: DETERMINISTIC_KEY: {}", detkey); if (!isWatchingAccountKey) { // If the non-encrypted case, the non-leaf keys (account, internal, external) have already // been // rederived and inserted at this point and the two lines below are just a no-op. In the // encrypted // case though, we can't rederive and we must reinsert, potentially building the heirarchy // object // if need be. if (path.size() == 0) { // Master key. chain.rootKey = detkey; chain.hierarchy = new DeterministicHierarchy(detkey); } else if (path.size() == 2) { if (detkey.getChildNumber().num() == 0) { chain.externalKey = detkey; chain.issuedExternalKeys = key.getDeterministicKey().getIssuedSubkeys(); lookaheadSize = Math.max(lookaheadSize, key.getDeterministicKey().getLookaheadSize()); } else if (detkey.getChildNumber().num() == 1) { chain.internalKey = detkey; chain.issuedInternalKeys = key.getDeterministicKey().getIssuedSubkeys(); } } } chain.hierarchy.putKey(detkey); chain.basicKeyChain.importKey(detkey); } } if (chain != null) { checkState(lookaheadSize >= 0); chain.setLookaheadSize(lookaheadSize); chain.maybeLookAhead(); chains.add(chain); } return chains; }
/** * A deterministic key is considered to be encrypted if it has access to encrypted private key * bytes, OR if its parent does. The reason is because the parent would be encrypted under the * same key and this key knows how to rederive its own private key bytes from the parent, if * needed. */ @Override public boolean isEncrypted() { return priv == null && (super.isEncrypted() || (parent != null && parent.isEncrypted())); }
/** * A deterministic key is considered to be 'public key only' if it hasn't got a private key part * and it cannot be rederived. If the hierarchy is encrypted this returns true. */ @Override public boolean isPubKeyOnly() { return super.isPubKeyOnly() && (parent == null || parent.isPubKeyOnly()); }
/** * Returns the same key with the parent pointer removed (it still knows its own path and the * parent fingerprint). * * <p>If this key doesn't have private key bytes stored/cached itself, but could rederive them * from the parent, then the new key returned by this method won't be able to do that. Thus, using * dropPrivateBytes().dropParent() on a regular DeterministicKey will yield a new DeterministicKey * that cannot sign or do other things involving the private key at all. */ public DeterministicKey dropParent() { DeterministicKey key = new DeterministicKey(getPath(), getChainCode(), pub, priv, null); key.parentFingerprint = parentFingerprint; return key; }