public void propagateBackward(Matrix target) { NeuralNetwork nn = getNeuralNetwork(); OutputErrorDerivative d = getProperties().getParameter(Constants.OUTPUT_ERROR_DERIVATIVE); Matrix outputErrorDerivative = d.getOutputErrorDerivative(activations.getValues(nn.getOutputLayer()), target); backpropagation.addValues(nn.getOutputLayer(), outputErrorDerivative); Set<Layer> calculatedLayers = new UniqueList<Layer>(); calculatedLayers.add(nn.getOutputLayer()); BackPropagationLayerCalculator blc = getBPLayerCalculator(); blc.backpropagate(nn, calculatedLayers, activations, backpropagation); }
public void propagateForward(Matrix input) { NeuralNetwork nn = getNeuralNetwork(); Set<Layer> calculatedLayers = new UniqueList<Layer>(); calculatedLayers.add(nn.getInputLayer()); activations.addValues(nn.getInputLayer(), input); nn.getLayerCalculator().calculate(nn, nn.getOutputLayer(), calculatedLayers, activations); }
@Override protected ConnectionCalculator createInputFunction( SortedMap<GraphConnections, Integer> inputConnections, ValuesProvider valuesProvider, Layer targetLayer) { return new AparapiSigmoidFunction(inputConnections, valuesProvider.getColumns(), targetLayer); }