@Override public List<Integer> batchRetrieve( final MlStormWekaState binaryClassifierState, final List<TridentTuple> queryTuples) { List<Integer> queryResults = new ArrayList<Integer>(); for (TridentTuple queryTuple : queryTuples) { double[] fv = getFeatureVectorFromArgs(queryTuple); final Instance instance = MlStormFeatureVectorUtils.buildWekaInstance(fv); try { final int classification = (int) binaryClassifierState.predict(instance); queryResults.add(classification); } catch (Exception e) { e.printStackTrace(); } } return queryResults; }
@Override public List<Map.Entry<Double, double[]>> batchRetrieve( final MlStormWekaState clustererState, final List<TridentTuple> queryTuples) { ArrayList<Map.Entry<Double, double[]>> queryResults = new ArrayList<Map.Entry<Double, double[]>>(); for (TridentTuple query : queryTuples) { //noinspection unchecked final Map<Integer, Map.Entry<Integer, double[]>> voteMap = (Map<Integer, Map.Entry<Integer, double[]>>) query.getValueByField("voteMap"); final double[] fv = new double[numPartitions]; for (Integer key : voteMap.keySet()) { fv[key] = voteMap.get(key).getKey(); } try { Instance testInstance = MlStormFeatureVectorUtils.buildWekaInstance(fv); double[] distribution = null; double result = clustererState.predict(testInstance); queryResults.add(new KeyValuePair<Double, double[]>(result, distribution)); } catch (IOException e) { e.printStackTrace(); } catch (ClassNotFoundException e) { e.printStackTrace(); } catch (Exception e) { if (e.toString().contains(MlStormWekaState.NOT_READY_TO_PREDICT)) { System.err.println( MessageFormat.format( "Not Ready yet! Continue training with - {0}", Arrays.toString(fv))); queryResults.add(new KeyValuePair<Double, double[]>(fv[fv.length - 1], null)); } else { throw new IllegalStateException(e); } } } return queryResults; }