コード例 #1
0
ファイル: DunnIndex.java プロジェクト: ahmad-bakr/IHDBSCAN
 /**
  * calculate the max cluster size
  *
  * @return max cluster size
  */
 private double calculateMaxClusterSize() {
   double maxClusterSize = Double.MIN_VALUE;
   for (int i = 0; i < this.clusters.size(); i++) {
     Cluster c = this.clusters.get(i);
     if (!c.getIsActive() || c.getPointsIDs().size() < 30) continue;
     double clusterSize = calculateClusterSize(c);
     if (clusterSize > maxClusterSize) {
       maxClusterSize = clusterSize;
     }
   }
   return maxClusterSize;
 }
コード例 #2
0
ファイル: DunnIndex.java プロジェクト: ahmad-bakr/IHDBSCAN
 /**
  * calculate the minimum distance between two clusters
  *
  * @param ci cluster ci
  * @param cj cluster cj
  * @return min distance between ci and cj
  */
 private double calculateMinDistanceBetweenTwoClusters(Cluster ci, Cluster cj) {
   double minDist = 0;
   ArrayList<Integer> ciPoints = ci.getPointsIDs();
   ArrayList<Integer> cjPoints = cj.getPointsIDs();
   for (int i = 0; i < ciPoints.size(); i++) {
     DatasetPattern ciPoint = this.dataset.get(ciPoints.get(i));
     for (int j = 0; j < cjPoints.size(); j++) {
       DatasetPattern cjPoint = this.dataset.get(cjPoints.get(j));
       double distance = EuclideanDistance.calculateDistance(ciPoint, cjPoint);
       minDist += distance;
     }
   }
   return minDist / ((ciPoints.size() - 1) * (cjPoints.size() * 1));
 }
コード例 #3
0
ファイル: DunnIndex.java プロジェクト: ahmad-bakr/IHDBSCAN
 public DunnIndex(
     ArrayList<Cluster> clusters,
     ArrayList<DenseRegion> denseRegions,
     ArrayList<DatasetPattern> dataset) {
   this.dataset = dataset;
   this.maxClusterSize = 0;
   this.clusters = clusters;
   for (int i = 0; i < clusters.size(); i++) {
     Cluster c = this.clusters.get(i);
     if (!c.getIsActive()) continue;
     ArrayList<DenseRegion> clusterDenseRegions = c.getRegions();
     for (int j = 0; j < clusterDenseRegions.size(); j++) {
       DenseRegion d = clusterDenseRegions.get(j);
       c.addPointsList(d.getPoints());
     }
   }
   this.maxClusterSize = calculateMaxClusterSize();
 }
コード例 #4
0
ファイル: DunnIndex.java プロジェクト: ahmad-bakr/IHDBSCAN
 /**
  * Calculate the cluster size or diameter
  *
  * @param c cluster
  * @return cluster size or diameter
  */
 private double calculateClusterSize(Cluster c) {
   double size = 0;
   ArrayList<Integer> clusterPoints = c.getPointsIDs();
   for (int i = 0; i < clusterPoints.size(); i++) {
     DatasetPattern point1 = this.dataset.get(clusterPoints.get(i));
     for (int j = 0; j < clusterPoints.size(); j++) {
       if (i == j) continue;
       DatasetPattern point2 = this.dataset.get(clusterPoints.get(j));
       size += EuclideanDistance.calculateDistance(point1, point2);
     }
   }
   return size / (clusterPoints.size() * (clusterPoints.size() - 1));
 }
コード例 #5
0
ファイル: DunnIndex.java プロジェクト: ahmad-bakr/IHDBSCAN
  /**
   * calculate the dunn index between two clusters
   *
   * @param clusters clusters
   * @param dataset dataset
   * @return dunn index
   */
  public double calculateDunnIndex() {
    double minDI = Double.MAX_VALUE;
    for (int i = 0; i < clusters.size(); i++) {
      Cluster ci = clusters.get(i);
      if (!ci.getIsActive()) continue;
      if (ci.getPointsIDs().size() < 30) continue;

      for (int j = 0; j < clusters.size(); j++) {
        Cluster cj = clusters.get(j);
        if (ci.getID() == cj.getID() || !cj.getIsActive()) continue;
        if (cj.getPointsIDs().size() < 30) continue;

        double minDistBetCiCj = calculateMinDistanceBetweenTwoClusters(ci, cj);
        double DIij = minDistBetCiCj / this.maxClusterSize;
        if (DIij < minDI) {
          minDI = DIij;
        }
      }
    }
    return minDI;
  }