コード例 #1
0
 /**
  * Classifies an instance w.r.t. the partitions found. It applies a naive min-distance algorithm.
  *
  * @param instance the instance to classify
  * @return the cluster that contains the nearest point to the instance
  */
 public int clusterInstance(Instance instance) throws java.lang.Exception {
   DoubleMatrix1D u = DoubleFactory1D.dense.make(instance.toDoubleArray());
   double min_dist = Double.POSITIVE_INFINITY;
   int c = -1;
   for (int i = 0; i < v.rows(); i++) {
     double dist = distnorm2(u, v.viewRow(i));
     if (dist < min_dist) {
       c = cluster[i];
       min_dist = dist;
     }
   }
   return c;
 }
コード例 #2
0
  public void buildClusterer(ArrayList<String> seqDB, double[][] sm) {
    seqList = seqDB;

    this.setSimMatrix(sm);

    Attribute seqString = new Attribute("sequence", (FastVector) null);
    FastVector attrInfo = new FastVector();
    attrInfo.addElement(seqString);
    Instances data = new Instances("data", attrInfo, 0);

    for (int i = 0; i < seqList.size(); i++) {
      Instance currentInst = new Instance(1);
      currentInst.setDataset(data);
      currentInst.setValue(0, seqList.get(i));
      data.add(currentInst);
    }

    try {
      buildClusterer(data);
    } catch (Exception e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }
  }