private void initializeClusters() { if (m_uniqueInitSamplesList.size() == 0) { throw new RuntimeException(); } for (int i = 0; i < m_numClusters; i++) { int randomIndex = (int) Math.floor(m_uniqueInitSamplesList.size() * Math.random()); m_clusters[i] = initSmoothClusterRandomly((IntTouple) m_uniqueInitSamplesList.get(randomIndex)); m_uniqueInitSamplesList.remove(randomIndex); } m_state = state_updating; for (int i = 0; i < m_initCounter; i++) { addSample(m_initSamples[i]); } }
private static long curveDistance(int x[], int y[], long abortIfGreaterThan) { long answer = 0; // for(int i = 0; i < x.length; i++) { for (int i = x.length; --i >= 0; ) { answer += sqrLookup[Math.abs(x[i] - y[i])]; if (answer > abortIfGreaterThan) { return Long.MAX_VALUE; } } return answer; }
private boolean computeNewMeans() { boolean changed = false; double avg_delta = 0; for (int i = 0; i < m_numClusters; i++) { long delta = 0; int sampleToCopyFrom = (int) Math.floor(Math.random() * m_initSamples.length); if (m_tmpClusterCount[i] == 0) { System.out.println(" Warning: zero sized cluster"); } for (int j = 0; j < m_dimensions; j++) { int newValue = 0; if (m_tmpClusterCount[i] != 0) { newValue = (int) Math.round((float) m_tmpClusterAccum[i][j] / m_tmpClusterCount[i]); } else { try { newValue = m_initSamples[sampleToCopyFrom][j]; } catch (NullPointerException npe) { int count = 0; do { sampleToCopyFrom = (int) Math.floor(Math.random() * m_initSamples.length); count++; if (count == 50) { throw new RuntimeException(); } } while (m_initSamples[sampleToCopyFrom] == null); } } if (!changed) { if (newValue != m_clusters[i][j]) { changed = true; } } delta += sqrLookup[Math.abs(newValue - m_clusters[i][j])]; m_clusters[i][j] = newValue; } avg_delta += (delta / m_dimensions); } avg_delta /= m_numClusters; // System.out.println("avg_delta per dimension: " + avg_delta); return changed; }