public void act(BucketbotBase self) { setDrawBolded(true); if (curTime < cruiseUntil) return; MersenneTwisterFast rand = SimulationWorld.rand; // if doing something else (stateQueue isn't empty), are trying to move to a new location, // but there's another bucketbot at that location, then sit and wait most of the time if (stateQueue.size() > 1 && stateQueue.get(1).getClass() == BucketbotMove.class && !SimulationWorldSimpleExample.getSimulationWorld() .map .isBucketbotMoveValid( self, ((BucketbotMove) stateQueue.get(1)).moveToX, ((BucketbotMove) stateQueue.get(1)).moveToY)) { // usually sit and wait if (rand.nextFloat() < .7f) return; } setTargetSpeed(getMaxVelocity()); float min_visible_distance = 3 * getRadius(); float new_direction = getBestEvadeDirection(min_visible_distance); if (getDirection() != new_direction) setDirection(new_direction); if (rand.nextFloat() < .5f) { stateQueue.remove(0); setDrawBolded(false); if (stateQueue.size() > 0) stateQueue.get(0).act(self); } }
// main CELL CA loop************ public boolean iterateCells() { /* // modify consumption matrix for (int i=0;i<size;i++) for (int j=0;j<size;j++) consumption[i][j] = consumptionBasal[Cells[i][j]]; */ // if (cellList == null) cellList = new Bag(size * size); for (int i = 0; i < size; i++) for (int j = 0; j < size; j++) { if (Cells[i][j] < 4) { // All tumour cell types have Cell > 0, now 0 corresponds to 'healthy cells' that // consume at basal rate only int[] p = new int[2]; p[0] = i; p[1] = j; cellList.add(p); if (Cells[i][j] == 1) { stem_cells_this_TS++; } else if (Cells[i][j] == 2 || Cells[i][j] == 3) { non_stem_cells_this_TS++; } } } while (cellList.size() != 0) { // Select the next lattice element at random int randomElemIndex = 0; if (cellList.size() > 1) randomElemIndex = random.nextInt(cellList.size() - 1); int[] point = (int[]) cellList.get(randomElemIndex); int rI = point[0]; int rJ = point[1]; cellList.remove(randomElemIndex); // Remove it from the cell list int cell = Cells[rI][rJ]; // Cell death // if ((Oxygen[rI][rJ]<hypoxia)) { if ((random.nextFloat() < deathprob) && Cells[rI][rJ] > 0) { // x% chances of dying Age[rI][rJ] = 0; if (Cells[rI][rJ] == 1) stemDeathCounter[rI][rJ]++; if (Cells[rI][rJ] < 4) { // TACDeathCounter[rI][rJ]++; Cells[rI][rJ] = 4; // was 0, now making necrotic area (truly empty) deaths++; stemBirthCounter[rI][rJ] = 0; carriedmutation[rI][rJ] = 0; // empty space now has no mutations carriedGenome[rI][rJ] = initGenome; // empty space now has no mutations } } else if ((cell == 3) && (Age[rI][rJ] > 100 * maxMatureCellAge)) { // added * to allow for an update each celltimestep/x // ************************** Age[rI][rJ] = 0; Cells[rI][rJ] = 4; // was 0, now making necrotic area (truly empty) // TACDeathCounter[rI][rJ]++; deaths++; } else if ((radiotherapy) && (cell == 2) && (random.nextFloat() > Oxygen[rI][rJ])) { // Radiotherapy Age[rI][rJ] = 0; if (Cells[rI][rJ] == 1) stemDeathCounter[rI][rJ]++; if ((Cells[rI][rJ] == 2) || (Cells[rI][rJ] == 3)) // TACDeathCounter[rI][rJ]++; Cells[rI][rJ] = 4; // make necrotic stemBirthCounter[rI][rJ] = 0; deaths++; } // healthy division else if ((cell == 0) && (vacantSites(rI, rJ) > 0)) { if (proliferation[cell] >= random.nextFloat()) { // If tossing the coin we are to proliferate... // if (Oxygen[rI][rJ]>prolifThreshold) { // AND the oxygen concentration is enough for // division.. // consumption[rI][rJ]=consumptionDivision[Cells[rI][rJ]]; int[] daughter = findEmptySite(rI, rJ); births++; Cells[daughter[0]][daughter[1]] = 0; carriedmutation[daughter[0]][daughter[1]] = 0; carriedGenome[daughter[0]][daughter[1]] = initGenome; // resetting space to healthy cell with no mutations } } // } // cancer division else if ((vacantSitesCancer(rI, rJ) > 0) && (cell > 0)) if (proliferation[cell] >= random.nextFloat()) { // If tossing the coin we are to proliferate... if ((cell == 1) || ((cell == 2) && (Age[rI][rJ] < maxProDivisions))) { // AND the cell is stem or TAC ... // if (Oxygen[rI][rJ]>prolifThreshold) { // AND the oxygen concentration is enough for // division.. // consumption[rI][rJ]=consumptionDivision[Cells[rI][rJ]]; int[] daughter = findEmptySiteCancer(rI, rJ); // and there is space (for cancer) // if ((daughter[0]==0) || (daughter[0]==size) || // (daughter[1]==0)||(daughter[1]==size)) {simulationFinished=true;} // stop sim if a // cell hits the edge births++; if (cell == 1) { // stem cell stemBirthsTotal[rI][rJ]++; stemBirthCounter[rI][rJ]++; if (asymmetricRatio > random.nextFloat()) { Cells[daughter[0]][daughter[1]] = 1; // placing the stem daughter stemBirthCounter[daughter[0]][daughter[1]] = stemBirthCounter[rI][rJ]; // update stem birth counter carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // inherit mutational status of parent carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; // inherit mutational status of parent if (mutfreq > random.nextFloat()) { // small chance of mutation mutationNum++; // advance mutation number System.out.println( +carriedmutation[rI][rJ] + ", " + mutationNum + ", " + stem_cells_this_TS + ", " + non_stem_cells_this_TS + ", " + timestep); // print (parent,child) pair // tree.put(carriedmutation[rI][rJ], mutationNum); // timeTree.put(mutationNum, timestep); // hash table stuff if (0.5 > random.nextFloat()) { carriedmutation[daughter[0]][daughter[1]] = mutationNum; genomeToMod = new StringBuilder(carriedGenome[daughter[0]][daughter[1]]); genomeToMod.setCharAt( mutationNum - 1, '1'); // daughter carries new carriedGenome carriedGenome[daughter[0]][daughter[1]] = genomeToMod; // System.out.println (carriedGenome[rI][rJ]); // System.out.println (carriedGenome[daughter[0]][daughter[1]]); } // 50:50 mutate new position daughter else { carriedmutation[rI][rJ] = mutationNum; // else mutate original position daughter genomeToMod = new StringBuilder(carriedGenome[rI][rJ]); // genomeToMod = carriedGenome[rI][rJ]; carriedGenome[rI][rJ] = genomeToMod; genomeToMod.setCharAt( mutationNum - 1, '1'); // original carries new carriedGenome // System.out.println (carriedGenome[rI][rJ]); // System.out.println (carriedGenome[daughter[0]][daughter[1]]); } } } else { Cells[daughter[0]][daughter[1]] = 2; // asymmetric division, daughter is TAC stemBirthCounter[daughter[0]][daughter[1]] = 0; // reset stem counter carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // TAC carries parental mutation flag carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; } // TAC carries parental genome // } // redundant from above // else { // Only if there's hypoxia induced change of symmetric division ratio // float newASR=asymmetricRatio+0*(hypoxia-Oxygen[rI][rJ]); // currently OFF by way of 0 the ^^ multiplier. // if (newASR>random.nextFloat()) // {Cells[daughter[0]][daughter[1]]=1;stemBirthCounter[daughter[0]][daughter[1]]=stemBirthCounter[rI][rJ];} // else // {Cells[daughter[0]][daughter[1]]=2;stemBirthCounter[daughter[0]][daughter[1]]=0;} // // Otherwise differentiate // } } else if (cell == 2) { // non-stem division // TACBirthCounter[rI][rJ]++; if (Age[rI][rJ] < maxProDivisions - 1) { Cells[daughter[0]][daughter[1]] = 2; Age[rI][rJ]++; Age[daughter[0]][daughter[1]] = Age[rI][rJ]; carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // TAC carries parental mutation flag carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; // TAC carries parental genome } else { Cells[daughter[0]][daughter[1]] = 3; Cells[rI][rJ] = 3; Age[rI][rJ] = 0; Age[daughter[0]][daughter[1]] = Age[rI][rJ]; carriedmutation[daughter[0]][daughter[1]] = carriedmutation[rI][rJ]; // TAC carries parental mutation flag carriedGenome[daughter[0]][daughter[1]] = carriedGenome[rI][rJ]; // TAC carries parental genome } } } } else if (pMotility > random.nextFloat()) { // Migration = not in use int[] daughter = findEmptySite(rI, rJ); Cells[daughter[0]][daughter[1]] = cell; Cells[rI][rJ] = 0; Age[daughter[0]][daughter[1]] = Age[rI][rJ]; Age[rI][rJ] = 0; System.err.println("moving " + rI + ", " + rJ); } // Aging for mature cells if (cell == 3) Age[rI][rJ]++; } return true; }