コード例 #1
0
  @Test
  public void testFindOptimumForRosenbrockFunction() throws Exception {
    MultiparamDoubleFunction function =
        individual -> {
          double[] x = individual.getValue();
          double sum = 0;
          for (int i = 0; i < x.length - 1; i++) {
            sum += 100 * Math.pow(x[i + 1] - Math.pow(x[i], 2), 2) + Math.pow(x[i] - 1, 2);
          }
          return sum;
        };

    DifferentialEvolution ev =
        new DifferentialEvolution(
            100000,
            function,
            new MultiparamDoubleIndividual(15, 4, 7, 20, 5),
            new MultiparamDoubleIndividual(10, 6, 2, 88, 2),
            new MultiparamDoubleIndividual(6, 3, 5, 1, 0),
            new MultiparamDoubleIndividual(0, 0, 1, 3, 0),
            new MultiparamDoubleIndividual(-2, -1, 0, 5, 6),
            new MultiparamDoubleIndividual(0, 1, 2, 3, 4));

    printMultipartResult(((MultiparamDoubleIndividual) ev.findOptimum()));
    assertAllParamsCloseToZero(((MultiparamDoubleIndividual) ev.findOptimum()));
  }
コード例 #2
0
  @Test
  public void testFindOptimumForSphereFunction() throws Exception {
    final int n = 5;
    DoubleIndividualFunction function =
        individual -> {
          double sum = 0;
          for (int i = 0; i < n; i++) {
            sum += individual.getValue() * individual.getValue();
          }
          return sum;
        };

    DifferentialEvolution ev =
        new DifferentialEvolution(
            100000,
            function,
            new DoubleIndividual(15),
            new DoubleIndividual(10),
            new DoubleIndividual(6),
            new DoubleIndividual(12),
            new DoubleIndividual(-2),
            new DoubleIndividual(-6));

    assertEquals(0, ((DoubleIndividual) ev.findOptimum()).getValue(), 0.2);
  }
コード例 #3
0
  @Test
  public void testFindOptimumForSphereFunction2() throws Exception {
    MultiparamDoubleFunction function =
        individual -> {
          double sum = 0;
          for (int i = 0; i < individual.getValue().length; i++) {
            sum += individual.getValue()[i] * individual.getValue()[i];
          }
          return sum;
        };

    DifferentialEvolution ev =
        new DifferentialEvolution(
            100000,
            function,
            new MultiparamDoubleIndividual(15, 4, 7, 20, 5),
            new MultiparamDoubleIndividual(10, 6, 2, 88, 2),
            new MultiparamDoubleIndividual(6, 3, 5, 1, 0),
            new MultiparamDoubleIndividual(0, 0, 1, 3, 0),
            new MultiparamDoubleIndividual(-2, -1, 0, 5, 6),
            new MultiparamDoubleIndividual(0, 1, 2, 3, 4));

    printMultipartResult(((MultiparamDoubleIndividual) ev.findOptimum()));
    assertAllParamsCloseToZero(((MultiparamDoubleIndividual) ev.findOptimum()));
  }
コード例 #4
0
 /**
  * The actual optimization routine It finds a minimum close to vector x when the absolute
  * tolerance for each parameter is specified.
  *
  * @param f multivariate function
  * @param xvec initial guesses for the minimum (contains the location of the minimum on return)
  * @param tolfx absolute tolerance of function value
  * @param tolx absolute tolerance of each parameter
  */
 public void optimize(MultivariateFunction f, double[] xvec, double tolfx, double tolx) {
   if (optimiser_ == null || xvec.length != currentNumberOfParameters_) {
     optimiser_ = new DifferentialEvolution(xvec.length);
     this.currentNumberOfParameters_ = xvec.length;
   }
   optimiser_.optimize(f, xvec, tolfx, tolx);
 }
コード例 #5
0
  @Test
  public void testFindOptimum() throws Exception {
    DoubleIndividualFunction function = i -> i.getValue() * i.getValue();

    DifferentialEvolution ev =
        new DifferentialEvolution(
            100,
            function,
            new DoubleIndividual(1555),
            new DoubleIndividual(1200),
            new DoubleIndividual(2),
            new DoubleIndividual(0.2),
            new DoubleIndividual(-2.6),
            new DoubleIndividual(4));

    System.out.println(((DoubleIndividual) ev.findOptimum()).getValue());
    assertEquals(0, ((DoubleIndividual) ev.findOptimum()).getValue(), 0.2);
  }