/** * Updates the outputs on the payment contract transaction and re-signs it. The state must be * READY in order to call this method. The signature that is returned should be sent to the server * so it has the ability to broadcast the best seen payment when the channel closes or times out. * * <p>The returned signature is over the payment transaction, which we never have a valid copy of * and thus there is no accessor for it on this object. * * <p>To spend the whole channel increment by {@link PaymentChannelClientState#getTotalValue()} - * {@link PaymentChannelClientState#getValueRefunded()} * * @param size How many satoshis to increment the payment by (note: not the new total). * @throws ValueOutOfRangeException If size is negative or the channel does not have sufficient * money in it to complete this payment. */ public synchronized IncrementedPayment incrementPaymentBy(Coin size) throws ValueOutOfRangeException { checkState(state == State.READY); checkNotExpired(); checkNotNull(size); // Validity of size will be checked by makeUnsignedChannelContract. if (size.signum() < 0) throw new ValueOutOfRangeException("Tried to decrement payment"); Coin newValueToMe = valueToMe.subtract(size); if (newValueToMe.compareTo(Transaction.MIN_NONDUST_OUTPUT) < 0 && newValueToMe.signum() > 0) { log.info( "New value being sent back as change was smaller than minimum nondust output, sending all"); size = valueToMe; newValueToMe = Coin.ZERO; } if (newValueToMe.signum() < 0) throw new ValueOutOfRangeException( "Channel has too little money to pay " + size + " satoshis"); Transaction tx = makeUnsignedChannelContract(newValueToMe); log.info("Signing new payment tx {}", tx); Transaction.SigHash mode; // If we spent all the money we put into this channel, we (by definition) don't care what the // outputs are, so // we sign with SIGHASH_NONE to let the server do what it wants. if (newValueToMe.equals(Coin.ZERO)) mode = Transaction.SigHash.NONE; else mode = Transaction.SigHash.SINGLE; TransactionSignature sig = tx.calculateSignature(0, myKey, multisigScript, mode, true); valueToMe = newValueToMe; updateChannelInWallet(); IncrementedPayment payment = new IncrementedPayment(); payment.signature = sig; payment.amount = size; return payment; }
public TransactionOutput( NetworkParameters params, @Nullable Transaction parent, Coin value, byte[] scriptBytes) { super(params); // Negative values obviously make no sense, except for -1 which is used as a sentinel value when // calculating // SIGHASH_SINGLE signatures, so unfortunately we have to allow that here. checkArgument( value.signum() >= 0 || value.equals(Coin.NEGATIVE_SATOSHI), "Negative values not allowed"); checkArgument( value.compareTo(NetworkParameters.MAX_MONEY) < 0, "Values larger than MAX_MONEY not allowed"); this.value = value.value; this.scriptBytes = scriptBytes; parentTransaction = parent; availableForSpending = true; length = 8 + VarInt.sizeOf(scriptBytes.length) + scriptBytes.length; }
PaymentChannelServerState( StoredServerChannel storedServerChannel, Wallet wallet, TransactionBroadcaster broadcaster) throws VerificationException { synchronized (storedServerChannel) { this.wallet = checkNotNull(wallet); this.broadcaster = checkNotNull(broadcaster); this.multisigContract = checkNotNull(storedServerChannel.contract); this.multisigScript = multisigContract.getOutput(0).getScriptPubKey(); this.clientKey = ECKey.fromPublicOnly(multisigScript.getChunks().get(1).data); this.clientOutput = checkNotNull(storedServerChannel.clientOutput); this.refundTransactionUnlockTimeSecs = storedServerChannel.refundTransactionUnlockTimeSecs; this.serverKey = checkNotNull(storedServerChannel.myKey); this.totalValue = multisigContract.getOutput(0).getValue(); this.bestValueToMe = checkNotNull(storedServerChannel.bestValueToMe); this.bestValueSignature = storedServerChannel.bestValueSignature; checkArgument(bestValueToMe.equals(Coin.ZERO) || bestValueSignature != null); this.storedServerChannel = storedServerChannel; storedServerChannel.state = this; this.state = State.READY; } }
/** * Called when the client provides us with a new signature and wishes to increment total payment * by size. Verifies the provided signature and only updates values if everything checks out. If * the new refundSize is not the lowest we have seen, it is simply ignored. * * @param refundSize How many satoshis of the original contract are refunded to the client (the * rest are ours) * @param signatureBytes The new signature spending the multi-sig contract to a new payment * transaction * @throws VerificationException If the signature does not verify or size is out of range (incl * being rejected by the network as dust). * @return true if there is more value left on the channel, false if it is now fully used up. */ public synchronized boolean incrementPayment(Coin refundSize, byte[] signatureBytes) throws VerificationException, ValueOutOfRangeException, InsufficientMoneyException { checkState(state == State.READY); checkNotNull(refundSize); checkNotNull(signatureBytes); TransactionSignature signature = TransactionSignature.decodeFromBitcoin(signatureBytes, true); // We allow snapping to zero for the payment amount because it's treated specially later, but // not less than // the dust level because that would prevent the transaction from being relayed/mined. final boolean fullyUsedUp = refundSize.equals(Coin.ZERO); if (refundSize.compareTo(clientOutput.getMinNonDustValue()) < 0 && !fullyUsedUp) throw new ValueOutOfRangeException( "Attempt to refund negative value or value too small to be accepted by the network"); Coin newValueToMe = totalValue.subtract(refundSize); if (newValueToMe.signum() < 0) throw new ValueOutOfRangeException("Attempt to refund more than the contract allows."); if (newValueToMe.compareTo(bestValueToMe) < 0) throw new ValueOutOfRangeException("Attempt to roll back payment on the channel."); // Get the wallet's copy of the multisigContract (ie with confidence information), if this is // null, the wallet // was not connected to the peergroup when the contract was broadcast (which may cause issues // down the road, and // disables our double-spend check next) Transaction walletContract = wallet.getTransaction(multisigContract.getHash()); checkNotNull( walletContract, "Wallet did not contain multisig contract {} after state was marked READY", multisigContract.getHash()); // Note that we check for DEAD state here, but this test is essentially useless in production // because we will // miss most double-spends due to bloom filtering right now anyway. This will eventually fixed // by network-wide // double-spend notifications, so we just wait instead of attempting to add all dependant // outpoints to our bloom // filters (and probably missing lots of edge-cases). if (walletContract.getConfidence().getConfidenceType() == TransactionConfidence.ConfidenceType.DEAD) { close(); throw new VerificationException("Multisig contract was double-spent"); } Transaction.SigHash mode; // If the client doesn't want anything back, they shouldn't sign any outputs at all. if (fullyUsedUp) mode = Transaction.SigHash.NONE; else mode = Transaction.SigHash.SINGLE; if (signature.sigHashMode() != mode || !signature.anyoneCanPay()) throw new VerificationException( "New payment signature was not signed with the right SIGHASH flags."); Wallet.SendRequest req = makeUnsignedChannelContract(newValueToMe); // Now check the signature is correct. // Note that the client must sign with SIGHASH_{SINGLE/NONE} | SIGHASH_ANYONECANPAY to allow us // to add additional // inputs (in case we need to add significant fee, or something...) and any outputs we want to // pay to. Sha256Hash sighash = req.tx.hashForSignature(0, multisigScript, mode, true); if (!clientKey.verify(sighash, signature)) throw new VerificationException("Signature does not verify on tx\n" + req.tx); bestValueToMe = newValueToMe; bestValueSignature = signatureBytes; updateChannelInWallet(); return !fullyUsedUp; }