/** * Compute and store statistics required for generating artificial data. * * @param data training instances * @exception Exception if statistics could not be calculated successfully */ protected void computeStats(Instances data) throws Exception { int numAttributes = data.numAttributes(); m_AttributeStats = new Vector(numAttributes); // use to map attributes to their stats for (int j = 0; j < numAttributes; j++) { if (data.attribute(j).isNominal()) { // Compute the probability of occurence of each distinct value int[] nomCounts = (data.attributeStats(j)).nominalCounts; double[] counts = new double[nomCounts.length]; if (counts.length < 2) throw new Exception("Nominal attribute has less than two distinct values!"); // Perform Laplace smoothing for (int i = 0; i < counts.length; i++) counts[i] = nomCounts[i] + 1; Utils.normalize(counts); double[] stats = new double[counts.length - 1]; stats[0] = counts[0]; // Calculate cumulative probabilities for (int i = 1; i < stats.length; i++) stats[i] = stats[i - 1] + counts[i]; m_AttributeStats.add(j, stats); } else if (data.attribute(j).isNumeric()) { // Get mean and standard deviation from the training data double[] stats = new double[2]; stats[0] = data.meanOrMode(j); stats[1] = Math.sqrt(data.variance(j)); m_AttributeStats.add(j, stats); } else System.err.println("Decorate can only handle numeric and nominal values."); } }
/** * Calculates the distance between two instances * * @param test the first instance * @param train the second instance * @return the distance between the two given instances, between 0 and 1 */ protected double distance(Instance first, Instance second) { double distance = 0; int firstI, secondI; for (int p1 = 0, p2 = 0; p1 < first.numValues() || p2 < second.numValues(); ) { if (p1 >= first.numValues()) { firstI = m_instances.numAttributes(); } else { firstI = first.index(p1); } if (p2 >= second.numValues()) { secondI = m_instances.numAttributes(); } else { secondI = second.index(p2); } if (firstI == m_instances.classIndex()) { p1++; continue; } if (secondI == m_instances.classIndex()) { p2++; continue; } double diff; if (firstI == secondI) { diff = difference(firstI, first.valueSparse(p1), second.valueSparse(p2)); p1++; p2++; } else if (firstI > secondI) { diff = difference(secondI, 0, second.valueSparse(p2)); p2++; } else { diff = difference(firstI, first.valueSparse(p1), 0); p1++; } distance += diff * diff; } return Math.sqrt(distance / m_instances.numAttributes()); }
/** * Returns the best cut of a graph w.r.t. the degree of dissimilarity between points of different * partitions and the degree of similarity between points of the same partition. * * @param W the weight matrix of the graph * @return an array of two elements, each of these contains the points of a partition */ protected static int[][] bestCut(DoubleMatrix2D W) { int n = W.columns(); // Builds the diagonal matrices D and D^(-1/2) (represented as their diagonals) DoubleMatrix1D d = DoubleFactory1D.dense.make(n); DoubleMatrix1D d_minus_1_2 = DoubleFactory1D.dense.make(n); for (int i = 0; i < n; i++) { double d_i = W.viewRow(i).zSum(); d.set(i, d_i); d_minus_1_2.set(i, 1 / Math.sqrt(d_i)); } DoubleMatrix2D D = DoubleFactory2D.sparse.diagonal(d); // System.out.println("DoubleMatrix2D :\n"+D.toString()); DoubleMatrix2D X = D.copy(); // System.out.println("DoubleMatrix2D copy :\n"+X.toString()); // X = D^(-1/2) * (D - W) * D^(-1/2) X.assign(W, Functions.minus); // System.out.println("DoubleMatrix2D X: (D-W) :\n"+X.toString()); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) X.set(i, j, X.get(i, j) * d_minus_1_2.get(i) * d_minus_1_2.get(j)); // Computes the eigenvalues and the eigenvectors of X EigenvalueDecomposition e = new EigenvalueDecomposition(X); DoubleMatrix1D lambda = e.getRealEigenvalues(); // Selects the eigenvector z_2 associated with the second smallest eigenvalue // Creates a map that contains the pairs <index, eigenvalue> AbstractIntDoubleMap map = new OpenIntDoubleHashMap(n); for (int i = 0; i < n; i++) map.put(i, Math.abs(lambda.get(i))); IntArrayList list = new IntArrayList(); // Sorts the map on the value map.keysSortedByValue(list); // Gets the index of the second smallest element int i_2 = list.get(1); // y_2 = D^(-1/2) * z_2 DoubleMatrix1D y_2 = e.getV().viewColumn(i_2).copy(); y_2.assign(d_minus_1_2, Functions.mult); // Creates a map that contains the pairs <i, y_2[i]> map.clear(); for (int i = 0; i < n; i++) map.put(i, y_2.get(i)); // Sorts the map on the value map.keysSortedByValue(list); // Search the element in the map previuosly ordered that minimizes the cut // of the partition double best_cut = Double.POSITIVE_INFINITY; int[][] partition = new int[2][]; // The array v contains all the elements of the graph ordered by their // projection on vector y_2 int[] v = list.elements(); // For each admissible splitting point i for (int i = 1; i < n; i++) { // The array a contains all the elements that have a projection on vector // y_2 less or equal to the one of i-th element // The array b contains the remaining elements int[] a = new int[i]; int[] b = new int[n - i]; System.arraycopy(v, 0, a, 0, i); System.arraycopy(v, i, b, 0, n - i); double cut = Ncut(W, a, b, v); if (cut < best_cut) { best_cut = cut; partition[0] = a; partition[1] = b; } } // System.out.println("Partition:"); // UtilsJS.printMatrix(partition); return partition; }
/** if clusterIdx is -1, all instances are used (a single metric for all clusters is used) */ public boolean trainMetric(int clusterIdx) throws Exception { Init(clusterIdx); double[] weights = new double[m_numAttributes]; int violatedConstraints = 0; int numInstances = 0; for (int instIdx = 0; instIdx < m_instances.numInstances(); instIdx++) { int assignment = m_clusterAssignments[instIdx]; // only instances assigned to this cluster are of importance if (assignment == clusterIdx || clusterIdx == -1) { numInstances++; if (clusterIdx < 0) { m_centroid = m_kmeans.getClusterCentroids().instance(assignment); } // accumulate variance Instance instance = m_instances.instance(instIdx); Instance diffInstance = m_metric.createDiffInstance(instance, m_centroid); for (int attr = 0; attr < m_numAttributes; attr++) { weights[attr] += diffInstance.value(attr); } // check all constraints for this instance Object list = m_instanceConstraintMap.get(new Integer(instIdx)); if (list != null) { // there are constraints associated with this instance ArrayList constraintList = (ArrayList) list; for (int i = 0; i < constraintList.size(); i++) { InstancePair pair = (InstancePair) constraintList.get(i); int linkType = pair.linkType; int firstIdx = pair.first; int secondIdx = pair.second; Instance instance1 = m_instances.instance(firstIdx); Instance instance2 = m_instances.instance(secondIdx); int otherIdx = (firstIdx == instIdx) ? m_clusterAssignments[secondIdx] : m_clusterAssignments[firstIdx]; if (otherIdx != -1) { // check whether the constraint is violated if (otherIdx != assignment && linkType == InstancePair.MUST_LINK) { diffInstance = m_metric.createDiffInstance(instance1, instance2); for (int attr = 0; attr < m_numAttributes; attr++) { weights[attr] += 0.5 * m_MLweight * diffInstance.value(attr); } } else if (otherIdx == assignment && linkType == InstancePair.CANNOT_LINK) { diffInstance = m_metric.createDiffInstance(instance1, instance2); for (int attr = 0; attr < m_numAttributes; attr++) { // this constraint will be counted twice, hence 0.5 weights[attr] += 0.5 * m_CLweight * m_maxCLDiffInstance.value(attr); weights[attr] -= 0.5 * m_CLweight * diffInstance.value(attr); } } } } } } } // System.out.println("Updating cluster " + clusterIdx // + " containing " + numInstances); // check the weights double[] newWeights = new double[m_numAttributes]; double[] currentWeights = m_metric.getWeights(); boolean needNewtonRaphson = false; for (int attr = 0; attr < m_numAttributes; attr++) { if (weights[attr] <= 0) { // check to avoid divide by 0 - TODO! System.out.println( "Negative weight " + weights[attr] + " for clusterIdx=" + clusterIdx + "; using prev value=" + currentWeights[attr]); newWeights[attr] = currentWeights[attr]; // needNewtonRaphson = true; // break; } else { if (m_regularize) { // solution of quadratic equation - TODO! int n = m_instances.numInstances(); double ratio = (m_logTermWeight * n) / (2 * weights[attr]); newWeights[attr] = ratio + Math.sqrt(ratio * ratio + (m_regularizerTermWeight * n) / weights[attr]); } else { newWeights[attr] = m_logTermWeight * numInstances / weights[attr]; } } } // do NR if needed if (needNewtonRaphson) { System.out.println("GOING TO NEWTON-RAPHSON!!!\n"); newWeights = updateWeightsUsingNewtonRaphson(currentWeights, weights); } // PRINT routine // System.out.println("Total constraints violated: " + violatedConstraints/2 + "; weights // are:"); // for (int attr=0; attr<numAttributes; attr++) { // System.out.print(newWeights[attr] + "\t"); // } // System.out.println(); // end PRINT routine m_metric.setWeights(newWeights); return true; }