/** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(4); newVector.addElement( new Option( "\tclass name of attribute evaluator to use for ranking. Place any\n" + "\tevaluator options LAST on the command line following a \"--\".\n" + "\teg.:\n" + "\t\t-A weka.attributeSelection.GainRatioAttributeEval ... -- -M\n" + "\t(default: weka.attributeSelection.GainRatioAttributeEval)", "A", 1, "-A <attribute evaluator>")); newVector.addElement( new Option( "\tnumber of attributes to be added from the" + "\n\tranking in each iteration (default = 1).", "S", 1, "-S <step size>")); newVector.addElement( new Option( "\tpoint in the ranking to start evaluating from. " + "\n\t(default = 0, ie. the head of the ranking).", "R", 1, "-R <start point>")); if ((m_ASEval != null) && (m_ASEval instanceof OptionHandler)) { newVector.addElement( new Option( "", "", 0, "\nOptions specific to " + "evaluator " + m_ASEval.getClass().getName() + ":")); Enumeration enu = ((OptionHandler) m_ASEval).listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } } return newVector.elements(); }
/** * Parses a given list of options. * * <p> * <!-- options-start --> * Valid options are: * * <p> * * <pre> -A <attribute evaluator> * class name of attribute evaluator to use for ranking. Place any * evaluator options LAST on the command line following a "--". * eg.: * -A weka.attributeSelection.GainRatioAttributeEval ... -- -M * (default: weka.attributeSelection.GainRatioAttributeEval)</pre> * * <pre> -S <step size> * number of attributes to be added from the * ranking in each iteration (default = 1).</pre> * * <pre> -R <start point> * point in the ranking to start evaluating from. * (default = 0, ie. the head of the ranking).</pre> * * <pre> * Options specific to evaluator weka.attributeSelection.GainRatioAttributeEval: * </pre> * * <pre> -M * treat missing values as a seperate value.</pre> * * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String optionString; resetOptions(); optionString = Utils.getOption('S', options); if (optionString.length() != 0) { setStepSize(Integer.parseInt(optionString)); } optionString = Utils.getOption('R', options); if (optionString.length() != 0) { setStartPoint(Integer.parseInt(optionString)); } optionString = Utils.getOption('A', options); if (optionString.length() == 0) optionString = GainRatioAttributeEval.class.getName(); setAttributeEvaluator(ASEvaluation.forName(optionString, Utils.partitionOptions(options))); }
/** * Ranks attributes using the specified attribute evaluator and then searches the ranking using * the supplied subset evaluator. * * @param ASEval the subset evaluator to guide the search * @param data the training instances. * @return an array (not necessarily ordered) of selected attribute indexes * @throws Exception if the search can't be completed */ public int[] search(ASEvaluation ASEval, Instances data) throws Exception { double best_merit = -Double.MAX_VALUE; double temp_merit; BitSet temp_group, best_group = null; if (!(ASEval instanceof SubsetEvaluator)) { throw new Exception(ASEval.getClass().getName() + " is not a " + "Subset evaluator!"); } m_SubsetEval = ASEval; m_Instances = data; m_numAttribs = m_Instances.numAttributes(); /* if (m_ASEval instanceof AttributeTransformer) { throw new Exception("Can't use an attribute transformer " +"with RankSearch"); } */ if (m_ASEval instanceof UnsupervisedAttributeEvaluator || m_ASEval instanceof UnsupervisedSubsetEvaluator) { m_hasClass = false; /* if (!(m_SubsetEval instanceof UnsupervisedSubsetEvaluator)) { throw new Exception("Must use an unsupervised subset evaluator."); } */ } else { m_hasClass = true; m_classIndex = m_Instances.classIndex(); } if (m_ASEval instanceof AttributeEvaluator) { // generate the attribute ranking first Ranker ranker = new Ranker(); m_ASEval.buildEvaluator(m_Instances); if (m_ASEval instanceof AttributeTransformer) { // get the transformed data a rebuild the subset evaluator m_Instances = ((AttributeTransformer) m_ASEval).transformedData(m_Instances); ((ASEvaluation) m_SubsetEval).buildEvaluator(m_Instances); } m_Ranking = ranker.search(m_ASEval, m_Instances); } else { GreedyStepwise fs = new GreedyStepwise(); double[][] rankres; fs.setGenerateRanking(true); ((ASEvaluation) m_ASEval).buildEvaluator(m_Instances); fs.search(m_ASEval, m_Instances); rankres = fs.rankedAttributes(); m_Ranking = new int[rankres.length]; for (int i = 0; i < rankres.length; i++) { m_Ranking[i] = (int) rankres[i][0]; } } // now evaluate the attribute ranking for (int i = m_startPoint; i < m_Ranking.length; i += m_add) { temp_group = new BitSet(m_numAttribs); for (int j = 0; j <= i; j++) { temp_group.set(m_Ranking[j]); } temp_merit = ((SubsetEvaluator) m_SubsetEval).evaluateSubset(temp_group); if (temp_merit > best_merit) { best_merit = temp_merit; ; best_group = temp_group; } } m_bestMerit = best_merit; return attributeList(best_group); }