@operator( value = {"clustering_cobweb"}, content_type = IType.LIST, category = {IOperatorCategory.STATISTICAL}, concept = {IConcept.STATISTIC}) @doc( value = "A list of agent groups clusteredby CobWeb Algorithm based on the given attributes. Some paremeters can be defined: " + "acuity: minimum standard deviation for numeric attributes; " + "cutoff: category utility threshold by which to prune nodes seed", examples = { @example( value = "clustering_cobweb([ag1, ag2, ag3, ag4, ag5],[\"size\",\"age\", \"weight\"],[\"acuity\"::3.0, \"cutoff\"::0.5)", equals = "for example, can return [[ag1, ag3], [ag2], [ag4, ag5]]", isExecutable = false) }, see = { "clustering_xmeans", "clustering_em", "clustering_farthestFirst", "clustering_simple_kmeans", "clustering_cobweb" }) public static IList<IList<IAgent>> primClusteringCobweb( final IScope scope, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final IList<String> attributes, final GamaMap<String, Object> parameters) { Cobweb cobweb = new Cobweb(); cobweb.setSeed(Cast.asInt(scope, scope.getRandom().getSeed())); if (parameters != null) { try { if (parameters.containsKey("acuity")) { cobweb.setAcuity(Cast.asFloat(scope, parameters.get("acuity"))); } if (parameters.containsKey("cutoff")) { cobweb.setCutoff(Cast.asFloat(scope, parameters.get("cutoff"))); } } catch (Exception e) { } } IList<IList<IAgent>> groupes = clusteringUsingWeka(scope, cobweb, attributes, agents); return groupes; }
@operator( value = {"clustering_farthestFirst"}, content_type = IType.LIST, category = {IOperatorCategory.STATISTICAL}, concept = {IConcept.STATISTIC}) @doc( value = "A list of agent groups clustered by Farthest First Algorithm based on the given attributes. Some paremeters can be defined: " + "num_clusters: the number of clusters", examples = { @example( value = "clustering_farthestFirst([ag1, ag2, ag3, ag4, ag5],[\"size\",\"age\", \"weight\"],[\"num_clusters\"::3])", equals = "for example, can return [[ag1, ag3], [ag2], [ag4, ag5]]", isExecutable = false) }, see = { "clustering_xmeans", "clustering_simple_kmeans", "clustering_em", "clustering_DBScan", "clustering_cobweb" }) public static IList<IList<IAgent>> primClusteringFarthestFirst( final IScope scope, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final IList<String> attributes, final GamaMap<String, Object> parameters) { FarthestFirst ff = new FarthestFirst(); ff.setSeed(Cast.asInt(scope, scope.getRandom().getSeed())); if (parameters != null) { try { if (parameters.containsKey("num_clusters")) { ff.setNumClusters(Cast.asInt(scope, parameters.get("num_clusters"))); } } catch (Exception e) { } } IList<IList<IAgent>> groupes = clusteringUsingWeka(scope, ff, attributes, agents); return groupes; }
@operator( value = {"clustering_DBScan"}, content_type = IType.LIST, category = {IOperatorCategory.STATISTICAL}, concept = {IConcept.STATISTIC}) @doc( value = "A list of agent groups clustered by DBScan Algorithm based on the given attributes. Some paremeters can be defined: " + "distance_f: The distance function to use for instances comparison (euclidean or manhattan); " + "min_points: minimun number of DataObjects required in an epsilon-range-query" + "epsilon: epsilon -- radius of the epsilon-range-queries", examples = { @example( value = "clustering_DBScan([ag1, ag2, ag3, ag4, ag5],[\"size\",\"age\", \"weight\"],[\"distance_f\"::\"manhattan\"])", equals = "for example, can return [[ag1, ag3], [ag2], [ag4, ag5]]", isExecutable = false) }, see = { "clustering_xmeans", "clustering_em", "clustering_farthestFirst", "clustering_simple_kmeans", "clustering_cobweb" }) public static IList<IList<IAgent>> primClusteringDBScan( final IScope scope, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final IList<String> attributes, final GamaMap<String, Object> parameters) { DBSCAN dbScan = new DBSCAN(); if (parameters != null) { try { if (parameters.containsKey("distance_f")) { String distanceFct = Cast.asString(scope, parameters.get("distance_f")); if (distanceFct.equals("manhattan")) { dbScan.setDatabase_distanceType(ManhattanDataObject.class.getName()); } else { dbScan.setDatabase_distanceType(EuclideanDistance.class.getName()); } } if (parameters.containsKey("min_points")) { dbScan.setMinPoints(Cast.asInt(scope, parameters.get("min_points"))); } if (parameters.containsKey("epsilon")) { dbScan.setEpsilon(Cast.asInt(scope, parameters.get("epsilon"))); } } catch (Exception e) { } } IList<IList<IAgent>> groupes = clusteringUsingWeka(scope, dbScan, attributes, agents); return groupes; }
@operator( value = {"clustering_xmeans"}, content_type = IType.LIST, category = {IOperatorCategory.STATISTICAL}, concept = {IConcept.STATISTIC}) @doc( value = "A list of agent groups clustered by X-Means Algorithm based on the given attributes. Some paremeters can be defined: bin_value: value given for true value of boolean attributes; cut_off_factor: the cut-off factor to use;" + "distance_f: The distance function to use. 4 possible distance functions: euclidean (by default) ; 'chebyshev', 'manhattan' or 'levenshtein'; " + "max_iterations: the maximum number of iterations to perform; max_kmeans: the maximum number of iterations to perform in KMeans; max_kmeans_for_children: the maximum number of iterations KMeans that is performed on the child centers;" + "max_num_clusters: the maximum number of clusters; min_num_clusters: the minimal number of clusters", examples = { @example( value = "clustering_xmeans([ag1, ag2, ag3, ag4, ag5],[\"size\",\"age\", \"weight\", \"is_male\"],[\"bin_value\"::1.0, \"distance_f\"::\"manhattan\", \"max_num_clusters\"::10, \"min_num_clusters\"::2])", equals = "for example, can return [[ag1, ag3], [ag2], [ag4, ag5]]", isExecutable = false) }, see = { "clustering_simple_kmeans", "clustering_em", "clustering_farthestFirst", "clustering_DBScan", "clustering_cobweb" }) public static IList<IList<IAgent>> primClusteringXMeans( final IScope scope, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final IList<String> attributes, final GamaMap<String, Object> parameters) throws GamaRuntimeException { XMeans xmeans = new XMeans(); xmeans.setSeed(Cast.asInt(scope, scope.getRandom().getSeed())); if (parameters != null) { if (parameters.containsKey("bin_value")) { xmeans.setBinValue(Cast.asFloat(scope, parameters.get("bin_value"))); } if (parameters.containsKey("cut_off_factor")) { xmeans.setCutOffFactor(Cast.asFloat(scope, parameters.get("cut_off_factor"))); } if (parameters.containsKey("distance_f")) { String distanceFct = Cast.asString(scope, parameters.get("distance_f")); if (distanceFct.equals("chebyshev")) { xmeans.setDistanceF(new ChebyshevDistance()); } else if (distanceFct.equals("manhattan")) { xmeans.setDistanceF(new ManhattanDistance()); } else if (distanceFct.equals("levenshtein")) { xmeans.setDistanceF(new EditDistance()); } } if (parameters.containsKey("max_iterations")) { try { xmeans.setMaxIterations(Cast.asInt(scope, parameters.get("max_iterations"))); } catch (Exception e) { } } if (parameters.containsKey("max_kmeans")) { xmeans.setMaxKMeans(Cast.asInt(scope, parameters.get("max_kmeans"))); } if (parameters.containsKey("max_kmeans_for_children")) { xmeans.setMaxKMeansForChildren( Cast.asInt(scope, parameters.get("max_kmeans_for_children"))); } if (parameters.containsKey("max_num_clusters")) { xmeans.setMaxNumClusters(Cast.asInt(scope, parameters.get("max_num_clusters"))); } if (parameters.containsKey("min_num_clusters")) { xmeans.setMinNumClusters(Cast.asInt(scope, parameters.get("min_num_clusters"))); } } IList<IList<IAgent>> groupes = clusteringUsingWeka(scope, xmeans, attributes, agents); return groupes; }
@operator( value = {"clustering_simple_kmeans"}, content_type = IType.LIST, category = {IOperatorCategory.STATISTICAL}, concept = {IConcept.STATISTIC}) @doc( value = "A list of agent groups clustered by K-Means Algorithm based on the given attributes. Some paremeters can be defined: " + "distance_f: The distance function to use. 4 possible distance functions: euclidean (by default) ; 'chebyshev', 'manhattan' or 'levenshtein'; " + "dont_replace_missing_values: if false, replace missing values globally with mean/mode; max_iterations: the maximum number of iterations to perform;" + "num_clusters: the number of clusters", examples = { @example( value = "clustering_simple_kmeans([ag1, ag2, ag3, ag4, ag5],[\"size\",\"age\", \"weight\"],[\"distance_f\"::\"manhattan\", \"num_clusters\"::3])", equals = "for example, can return [[ag1, ag3], [ag2], [ag4, ag5]]", isExecutable = false) }, see = { "clustering_xmeans", "clustering_em", "clustering_farthestFirst", "clustering_DBScan", "clustering_cobweb" }) public static IList<IList<IAgent>> primClusteringSimpleKMeans( final IScope scope, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents, final IList<String> attributes, final GamaMap<String, Object> parameters) { SimpleKMeans kmeans = new SimpleKMeans(); kmeans.setSeed(Cast.asInt(scope, scope.getRandom().getSeed())); if (parameters != null) { try { if (parameters.containsKey("distance_f")) { String distanceFct = Cast.asString(scope, parameters.get("distance_f")); if (distanceFct.equals("chebyshev")) { kmeans.setDistanceFunction(new ChebyshevDistance()); } else if (distanceFct.equals("manhattan")) { kmeans.setDistanceFunction(new ManhattanDistance()); } else if (distanceFct.equals("levenshtein")) { kmeans.setDistanceFunction(new EditDistance()); } } if (parameters.containsKey("dont_replace_missing_values")) { kmeans.setDontReplaceMissingValues( Cast.asBool(scope, parameters.get("dont_replace_missing_values"))); } if (parameters.containsKey("max_iterations")) { kmeans.setMaxIterations(Cast.asInt(scope, parameters.get("max_iterations"))); } if (parameters.containsKey("num_clusters")) { kmeans.setNumClusters(Cast.asInt(scope, parameters.get("num_clusters"))); } } catch (Exception e) { } } IList<IList<IAgent>> groupes = clusteringUsingWeka(scope, kmeans, attributes, agents); return groupes; }