Esempio n. 1
0
 public static Response redirect(
     JsonObject fromPageResponse, Key rfModel, Key dataKey, boolean oobee) {
   JsonObject redir = new JsonObject();
   redir.addProperty(MODEL_KEY, rfModel.toString());
   redir.addProperty(DATA_KEY, dataKey.toString());
   redir.addProperty(OOBEE, oobee);
   return Response.redirect(fromPageResponse, RFView.class, redir);
 }
Esempio n. 2
0
 private static void addFolder(FileSystem fs, Path p, JsonArray succeeded, JsonArray failed) {
   try {
     if (fs == null) return;
     for (FileStatus file : fs.listStatus(p)) {
       Path pfs = file.getPath();
       if (file.isDir()) {
         addFolder(fs, pfs, succeeded, failed);
       } else {
         Key k = Key.make(pfs.toString());
         long size = file.getLen();
         Value val = null;
         if (pfs.getName().endsWith(Extensions.JSON)) {
           JsonParser parser = new JsonParser();
           JsonObject json = parser.parse(new InputStreamReader(fs.open(pfs))).getAsJsonObject();
           JsonElement v = json.get(Constants.VERSION);
           if (v == null) throw new RuntimeException("Missing version");
           JsonElement type = json.get(Constants.TYPE);
           if (type == null) throw new RuntimeException("Missing type");
           Class c = Class.forName(type.getAsString());
           OldModel model = (OldModel) c.newInstance();
           model.fromJson(json);
         } else if (pfs.getName().endsWith(Extensions.HEX)) { // Hex file?
           FSDataInputStream s = fs.open(pfs);
           int sz = (int) Math.min(1L << 20, size); // Read up to the 1st meg
           byte[] mem = MemoryManager.malloc1(sz);
           s.readFully(mem);
           // Convert to a ValueArray (hope it fits in 1Meg!)
           ValueArray ary = new ValueArray(k, 0).read(new AutoBuffer(mem));
           val = new Value(k, ary, Value.HDFS);
         } else if (size >= 2 * ValueArray.CHUNK_SZ) {
           val =
               new Value(
                   k,
                   new ValueArray(k, size),
                   Value.HDFS); // ValueArray byte wrapper over a large file
         } else {
           val = new Value(k, (int) size, Value.HDFS); // Plain Value
           val.setdsk();
         }
         DKV.put(k, val);
         Log.info("PersistHdfs: DKV.put(" + k + ")");
         JsonObject o = new JsonObject();
         o.addProperty(Constants.KEY, k.toString());
         o.addProperty(Constants.FILE, pfs.toString());
         o.addProperty(Constants.VALUE_SIZE, file.getLen());
         succeeded.add(o);
       }
     }
   } catch (Exception e) {
     Log.err(e);
     JsonObject o = new JsonObject();
     o.addProperty(Constants.FILE, p.toString());
     o.addProperty(Constants.ERROR, e.getMessage());
     failed.add(o);
   }
 }
Esempio n. 3
0
 public JsonObject toJson() {
   JsonObject res = new JsonObject();
   JsonArray rows = new JsonArray();
   for (int i = 0; i < _rows.length; ++i) rows.add(new JsonPrimitive(_rows[i]));
   JsonArray dist = new JsonArray();
   for (int i = 0; i < _dist.length; ++i) dist.add(new JsonPrimitive(_dist[i]));
   res.add("rows_per_cluster", rows);
   res.add("sqr_error_per_cluster", dist);
   return res;
 }
Esempio n. 4
0
 public static void addFolder(Path p, JsonArray succeeded, JsonArray failed) throws IOException {
   FileSystem fs = FileSystem.get(p.toUri(), PersistHdfs.CONF);
   if (!fs.exists(p)) {
     JsonObject o = new JsonObject();
     o.addProperty(Constants.FILE, p.toString());
     o.addProperty(Constants.ERROR, "Path does not exist!");
     failed.add(o);
     return;
   }
   addFolder(fs, p, succeeded, failed);
 }
Esempio n. 5
0
 private StringBuilder stats(StringBuilder sb, JsonElement json) {
   if (json == null) {
     return sb.append(" / / ");
   } else {
     JsonObject obj = json.getAsJsonObject();
     return sb.append(
         String.format(
             "%4.1f / %4.1f / %4.1f",
             obj.get(MIN).getAsDouble(), obj.get(MAX).getAsDouble(), obj.get(MEAN).getAsDouble()));
   }
 }
Esempio n. 6
0
 @Override
 public JsonObject toJson() {
   JsonObject res = new JsonObject();
   res.addProperty(Constants.VERSION, H2O.VERSION);
   res.addProperty(Constants.TYPE, KMeansModel.class.getName());
   res.addProperty(Constants.ERROR, _error);
   JsonArray ary = new JsonArray();
   for (double[] dd : clusters()) {
     JsonArray ary2 = new JsonArray();
     for (double d : dd) ary2.add(new JsonPrimitive(d));
     ary.add(ary2);
   }
   res.add(Constants.CLUSTERS, ary);
   return res;
 }
Esempio n. 7
0
  protected JsonObject defaultJsonResponse() {
    // This will be shown every request
    JsonObject r = new JsonObject();
    RFModel model = _modelKey.value();
    r.addProperty(DATA_KEY, _dataKey.originalValue());
    r.addProperty(MODEL_KEY, _modelKey.originalValue());
    r.addProperty(CLASS, _classCol.specified() ? _classCol.value() : findResponseIdx(model));
    r.addProperty(NUM_TREES, model._totalTrees);
    r.addProperty(MTRY, model._splitFeatures);
    r.addProperty(MTRY_NODES, Arrays.toString(model._nodesSplitFeatures));
    r.addProperty(OOBEE, _oobee.value());
    // CM specific options
    r.addProperty(NO_CM, _noCM.value());
    r.addProperty(JSON_REFRESH_THRESHOLD_CM, _refreshThresholdCM.value());

    return r;
  }
Esempio n. 8
0
 @Override
 public String build(Response response, JsonObject t, String contextName) {
   int n = t.get(Constants.TREE_COUNT).getAsInt();
   StringBuilder sb = new StringBuilder();
   if (n > 0) {
     sb.append("<h3>Trees</h3>");
     sb.append(t.get(Constants.TREE_COUNT)).append(" trees with min/max/mean depth of ");
     stats(sb, t.get(TREE_DEPTH)).append(" and leaf of ");
     stats(sb, t.get(TREE_LEAVES)).append(".<br>");
     for (int i = 0; i < n; ++i) {
       sb.append(
               RFTreeView.link(_modelKey.value(), i, _dataKey.value(), Integer.toString(i + 1)))
           .append(" ");
     }
   } else {
     sb.append("<h3>No trees yet...</h3>");
   }
   return sb.toString();
 }
Esempio n. 9
0
  public static Response redirect(
      JsonObject fromPageResponse,
      Key jobKey,
      Key modelKey,
      Key dataKey,
      int ntree,
      int classCol,
      String weights,
      boolean oobee,
      boolean iterativeCM) {
    JsonObject redirect = new JsonObject();
    if (jobKey != null) redirect.addProperty(JOB, jobKey.toString());
    redirect.addProperty(MODEL_KEY, modelKey.toString());
    redirect.addProperty(DEST_KEY, modelKey.toString());
    redirect.addProperty(DATA_KEY, dataKey.toString());
    redirect.addProperty(NUM_TREES, ntree);
    redirect.addProperty(CLASS, classCol);
    if (weights != null) redirect.addProperty(WEIGHTS, weights);
    redirect.addProperty(OOBEE, oobee);
    redirect.addProperty(ITERATIVE_CM, iterativeCM);

    return Response.redirect(fromPageResponse, RFView.class, redirect);
  }
Esempio n. 10
0
 @Override
 public String build(Response response, JsonObject cm, String contextName) {
   StringBuilder sb = new StringBuilder();
   if (cm.has(JSON_CM_MATRIX)) {
     sb.append("<h3>Confusion matrix - ")
         .append(cm.get(JSON_CM_TYPE).getAsString())
         .append("</h3>");
     sb.append("<dl class='dl-horizontal'>");
     sb.append("<dt>classification error</dt><dd>")
         .append(String.format("%5.3f %%", 100 * cm.get(JSON_CM_CLASS_ERR).getAsFloat()))
         .append("</dd>");
     long rows = cm.get(JSON_CM_ROWS).getAsLong();
     long skippedRows = cm.get(JSON_CM_ROWS_SKIPPED).getAsLong();
     sb.append("<dt>used / skipped rows </dt><dd>")
         .append(
             String.format(
                 "%d / %d (%3.1f %%)",
                 rows, skippedRows, (double) skippedRows * 100 / (skippedRows + rows)))
         .append("</dd>");
     sb.append("<dt>trees used</dt><dd>" + cm.get(JSON_CM_TREES).getAsInt()).append("</dd>");
     sb.append("</dl>");
     sb.append("<table class='table table-striped table-bordered table-condensed'>");
     sb.append("<tr><th>Actual \\ Predicted</th>");
     JsonArray header = (JsonArray) cm.get(JSON_CM_HEADER);
     for (JsonElement e : header) sb.append("<th>" + e.getAsString() + "</th>");
     sb.append("<th>Error</th></tr>");
     int classes = header.size();
     long[] totals = new long[classes];
     JsonArray matrix = (JsonArray) cm.get(JSON_CM_MATRIX);
     long sumTotal = 0;
     long sumError = 0;
     for (int crow = 0; crow < classes; ++crow) {
       JsonArray row = (JsonArray) matrix.get(crow);
       long total = 0;
       long error = 0;
       sb.append("<tr><th>" + header.get(crow).getAsString() + "</th>");
       for (int ccol = 0; ccol < classes; ++ccol) {
         long num = row.get(ccol).getAsLong();
         total += num;
         totals[ccol] += num;
         if (ccol == crow) {
           sb.append("<td style='background-color:LightGreen'>");
         } else {
           sb.append("<td>");
           error += num;
         }
         sb.append(num);
         sb.append("</td>");
       }
       sb.append("<td>");
       sb.append(String.format("%5.3f = %d / %d", (double) error / total, error, total));
       sb.append("</td></tr>");
       sumTotal += total;
       sumError += error;
     }
     sb.append("<tr><th>Totals</th>");
     for (int i = 0; i < totals.length; ++i) sb.append("<td>" + totals[i] + "</td>");
     sb.append("<td><b>");
     sb.append(
         String.format("%5.3f = %d / %d", (double) sumError / sumTotal, sumError, sumTotal));
     sb.append("</b></td></tr>");
     sb.append("</table>");
   } else {
     sb.append("<div class='alert alert-info'>");
     sb.append("Confusion matrix is being computed into the key:</br>");
     sb.append(cm.get(JSON_CONFUSION_KEY).getAsString());
     sb.append("</div>");
   }
   return sb.toString();
 }
Esempio n. 11
0
  @Override
  protected Response serve() {
    int tasks = 0;
    int finished = 0;
    RFModel model = _modelKey.value();
    double[] weights = _weights.value();
    // Finish refresh after rf model is done and confusion matrix for all trees is computed
    boolean done = false;
    int classCol = _classCol.specified() ? _classCol.value() : findResponseIdx(model);

    tasks = model._totalTrees;
    finished = model.size();

    // Handle cancelled/aborted jobs
    if (_job.value() != null) {
      Job jjob = Job.findJob(_job.value());
      if (jjob != null && jjob.isCancelled())
        return Response.error(
            jjob.exception == null ? "Job was cancelled by user!" : jjob.exception);
    }

    JsonObject response = defaultJsonResponse();
    // CM return and possible computation is requested
    if (!_noCM.value() && (finished == tasks || _iterativeCM.value()) && finished > 0) {
      // Compute the highest number of trees which is less then a threshold
      int modelSize = tasks * _refreshThresholdCM.value() / 100;
      modelSize =
          modelSize == 0 || finished == tasks ? finished : modelSize * (finished / modelSize);

      // Get the computing the matrix - if no job is computing, then start a new job
      Job cmJob =
          ConfusionTask.make(
              model, modelSize, _dataKey.value()._key, classCol, weights, _oobee.value());
      // Here the the job is running - it saved a CM which can be already finished or in invalid
      // state.
      CMFinal confusion = UKV.get(cmJob.dest());
      // if the matrix is valid, report it in the JSON
      if (confusion != null && confusion.valid() && modelSize > 0) {
        // finished += 1;
        JsonObject cm = new JsonObject();
        JsonArray cmHeader = new JsonArray();
        JsonArray matrix = new JsonArray();
        cm.addProperty(JSON_CM_TYPE, _oobee.value() ? "OOB error estimate" : "full scoring");
        cm.addProperty(JSON_CM_CLASS_ERR, confusion.classError());
        cm.addProperty(JSON_CM_ROWS_SKIPPED, confusion.skippedRows());
        cm.addProperty(JSON_CM_ROWS, confusion.rows());
        // create the header
        for (String s : cfDomain(confusion, 1024)) cmHeader.add(new JsonPrimitive(s));
        cm.add(JSON_CM_HEADER, cmHeader);
        // add the matrix
        final int nclasses = confusion.dimension();
        JsonArray classErrors = new JsonArray();
        for (int crow = 0; crow < nclasses; ++crow) {
          JsonArray row = new JsonArray();
          int classHitScore = 0;
          for (int ccol = 0; ccol < nclasses; ++ccol) {
            row.add(new JsonPrimitive(confusion.matrix(crow, ccol)));
            if (crow != ccol) classHitScore += confusion.matrix(crow, ccol);
          }
          // produce infinity members in case of 0.f/0
          classErrors.add(
              new JsonPrimitive(
                  (float) classHitScore / (classHitScore + confusion.matrix(crow, crow))));
          matrix.add(row);
        }
        cm.add(JSON_CM_CLASSES_ERRORS, classErrors);
        cm.add(JSON_CM_MATRIX, matrix);
        cm.addProperty(JSON_CM_TREES, modelSize);
        response.add(JSON_CM, cm);
        // Signal end only and only if all trees were generated and confusion matrix is valid
        done = finished == tasks;
      }
    } else if (_noCM.value() && finished == tasks) done = true;

    // Trees
    JsonObject trees = new JsonObject();
    trees.addProperty(Constants.TREE_COUNT, model.size());
    if (model.size() > 0) {
      trees.add(Constants.TREE_DEPTH, model.depth().toJson());
      trees.add(Constants.TREE_LEAVES, model.leaves().toJson());
    }
    response.add(Constants.TREES, trees);

    // Build a response
    Response r;
    if (done) {
      r = jobDone(response);
      r.addHeader(
          "<div class='alert'>"
              + /*RFScore.link(MODEL_KEY, model._key, "Use this model for scoring.") */ GeneratePredictionsPage
                  .link(model._key, "Predict!")
              + " </div>");
    } else {
      r = Response.poll(response, finished, tasks);
    }
    r.setBuilder(JSON_CM, new ConfusionMatrixBuilder());
    r.setBuilder(TREES, new TreeListBuilder());
    return r;
  }