@Override protected void compute2() { _model = null; // Resulting model! try { Scope.enter(); // Cleanup temp keys init(true); // Do any expensive tests & conversions now // Do lock even before checking the errors, since this block is finalized by unlock // (not the best solution, but the code is more readable) _parms.read_lock_frames(SharedTree.this); // Fetch & read-lock input frames if (error_count() > 0) throw H2OModelBuilderIllegalArgumentException.makeFromBuilder(SharedTree.this); // New Model? Or continuing from a checkpoint? if (_parms._checkpoint && DKV.get(_parms._model_id) != null) { _model = DKV.get(_dest).get(); _model.write_lock(_key); // do not delete previous model; we are extending it } else { // New Model // Compute the zero-tree error - guessing only the class distribution. // MSE is stddev squared when guessing for regression. // For classification, guess the largest class. _model = makeModel( _dest, _parms, initial_MSE(_response, _response), _valid == null ? Double.NaN : initial_MSE(_response, _vresponse)); // Make a fresh model _model.delete_and_lock(_key); // and clear & write-lock it (smashing any prior) _model._output._init_f = _initialPrediction; } // Compute the response domain; makes for nicer printouts String[] domain = _response.domain(); assert (_nclass > 1 && domain != null) || (_nclass == 1 && domain == null); if (_nclass == 1) domain = new String[] {"r"}; // For regression, give a name to class 0 // Compute class distribution, used to for initial guesses and to // upsample minority classes (if asked for). if (_nclass > 1) { // Classification? // Handle imbalanced classes by stratified over/under-sampling. // initWorkFrame sets the modeled class distribution, and // model.score() corrects the probabilities back using the // distribution ratios if (_model._output.isClassifier() && _parms._balance_classes) { float[] trainSamplingFactors = new float [_train .lastVec() .domain() .length]; // leave initialized to 0 -> will be filled up below if (_parms._class_sampling_factors != null) { if (_parms._class_sampling_factors.length != _train.lastVec().domain().length) throw new IllegalArgumentException( "class_sampling_factors must have " + _train.lastVec().domain().length + " elements"); trainSamplingFactors = _parms._class_sampling_factors.clone(); // clone: don't modify the original } Frame stratified = water.util.MRUtils.sampleFrameStratified( _train, _train.lastVec(), _train.vec(_model._output.weightsName()), trainSamplingFactors, (long) (_parms._max_after_balance_size * _train.numRows()), _parms._seed, true, false); if (stratified != _train) { _train = stratified; _response = stratified.vec(_parms._response_column); _weights = stratified.vec(_parms._weights_column); // Recompute distribution since the input frame was modified MRUtils.ClassDist cdmt2 = _weights != null ? new MRUtils.ClassDist(_nclass).doAll(_response, _weights) : new MRUtils.ClassDist(_nclass).doAll(_response); _model._output._distribution = cdmt2.dist(); _model._output._modelClassDist = cdmt2.rel_dist(); } } Log.info("Prior class distribution: " + Arrays.toString(_model._output._priorClassDist)); Log.info("Model class distribution: " + Arrays.toString(_model._output._modelClassDist)); } // Also add to the basic working Frame these sets: // nclass Vecs of current forest results (sum across all trees) // nclass Vecs of working/temp data // nclass Vecs of NIDs, allowing 1 tree per class // Current forest values: results of summing the prior M trees for (int i = 0; i < _nclass; i++) _train.add("Tree_" + domain[i], _response.makeZero()); // Initial work columns. Set-before-use in the algos. for (int i = 0; i < _nclass; i++) _train.add("Work_" + domain[i], _response.makeZero()); // One Tree per class, each tree needs a NIDs. For empty classes use a -1 // NID signifying an empty regression tree. for (int i = 0; i < _nclass; i++) _train.add( "NIDs_" + domain[i], _response.makeCon( _model._output._distribution == null ? 0 : (_model._output._distribution[i] == 0 ? -1 : 0))); // Tag out rows missing the response column new ExcludeNAResponse().doAll(_train); // Variable importance: squared-error-improvement-per-variable-per-split _improvPerVar = new float[_ncols]; // Sub-class tree-model-builder specific build code buildModel(); done(); // Job done! } catch (Throwable t) { Job thisJob = DKV.getGet(_key); if (thisJob._state == JobState.CANCELLED) { Log.info("Job cancelled by user."); } else { t.printStackTrace(); failed(t); throw t; } } finally { if (_model != null) _model.unlock(_key); _parms.read_unlock_frames(SharedTree.this); if (_model == null) Scope.exit(); else { Scope.exit( _model._key, ModelMetrics.buildKey(_model, _parms.train()), ModelMetrics.buildKey(_model, _parms.valid())); } } tryComplete(); }
@Override protected void compute2() { CoxPHModel model = null; try { Scope.enter(); _parms.read_lock_frames(CoxPH.this); init(true); applyScoringFrameSideEffects(); // The model to be built model = new CoxPHModel(dest(), _parms, new CoxPHModel.CoxPHOutput(CoxPH.this)); model.delete_and_lock(_key); applyTrainingFrameSideEffects(); int nResponses = 1; boolean useAllFactorLevels = false; final DataInfo dinfo = new DataInfo( Key.make(), _modelBuilderTrain, null, nResponses, useAllFactorLevels, DataInfo.TransformType.DEMEAN, TransformType.NONE, true, false, false, false, false, false); initStats(model, dinfo); final int n_offsets = (model._parms.offset_columns == null) ? 0 : model._parms.offset_columns.length; final int n_coef = dinfo.fullN() - n_offsets; final double[] step = MemoryManager.malloc8d(n_coef); final double[] oldCoef = MemoryManager.malloc8d(n_coef); final double[] newCoef = MemoryManager.malloc8d(n_coef); Arrays.fill(step, Double.NaN); Arrays.fill(oldCoef, Double.NaN); for (int j = 0; j < n_coef; ++j) newCoef[j] = model._parms.init; double oldLoglik = -Double.MAX_VALUE; final int n_time = (int) (model._output.max_time - model._output.min_time + 1); final boolean has_start_column = (model._parms.start_column != null); final boolean has_weights_column = (model._parms.weights_column != null); for (int i = 0; i <= model._parms.iter_max; ++i) { model._output.iter = i; final CoxPHTask coxMR = new CoxPHTask( self(), dinfo, newCoef, model._output.min_time, n_time, n_offsets, has_start_column, has_weights_column) .doAll(dinfo._adaptedFrame); final double newLoglik = calcLoglik(model, coxMR); if (newLoglik > oldLoglik) { if (i == 0) calcCounts(model, coxMR); calcModelStats(model, newCoef, newLoglik); calcCumhaz_0(model, coxMR); if (newLoglik == 0) model._output.lre = -Math.log10(Math.abs(oldLoglik - newLoglik)); else model._output.lre = -Math.log10(Math.abs((oldLoglik - newLoglik) / newLoglik)); if (model._output.lre >= model._parms.lre_min) break; Arrays.fill(step, 0); for (int j = 0; j < n_coef; ++j) for (int k = 0; k < n_coef; ++k) step[j] -= model._output.var_coef[j][k] * model._output.gradient[k]; for (int j = 0; j < n_coef; ++j) if (Double.isNaN(step[j]) || Double.isInfinite(step[j])) break; oldLoglik = newLoglik; System.arraycopy(newCoef, 0, oldCoef, 0, oldCoef.length); } else { for (int j = 0; j < n_coef; ++j) step[j] /= 2; } for (int j = 0; j < n_coef; ++j) newCoef[j] = oldCoef[j] - step[j]; } model.update(_key); } catch (Throwable t) { Job thisJob = DKV.getGet(_key); if (thisJob._state == JobState.CANCELLED) { Log.info("Job cancelled by user."); } else { t.printStackTrace(); failed(t); throw t; } } finally { updateModelOutput(); _parms.read_unlock_frames(CoxPH.this); Scope.exit(); done(); // Job done! } tryComplete(); }