/** Test of learn method, of class LogisticRegression. */ @Test public void testIris() { System.out.println("Iris"); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); try { AttributeDataset iris = arffParser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/iris.arff")); double[][] x = iris.toArray(new double[iris.size()][]); int[] y = iris.toArray(new int[iris.size()]); int n = x.length; LOOCV loocv = new LOOCV(n); int error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); LogisticRegression logit = new LogisticRegression(trainx, trainy); if (y[loocv.test[i]] != logit.predict(x[loocv.test[i]])) error++; } System.out.println("Logistic Regression error = " + error); assertEquals(3, error); } catch (Exception ex) { System.err.println(ex); } }
/** Test of learn method, of class RDA. */ @Test public void testLearn() { System.out.println("learn"); ArffParser arffParser = new ArffParser(); arffParser.setResponseIndex(4); try { AttributeDataset iris = arffParser.parse(smile.data.parser.IOUtils.getTestDataFile("weka/iris.arff")); double[][] x = iris.toArray(new double[iris.size()][]); int[] y = iris.toArray(new int[iris.size()]); int n = x.length; LOOCV loocv = new LOOCV(n); int error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); RDA rda = new RDA(trainx, trainy, 0.0); if (y[loocv.test[i]] != rda.predict(x[loocv.test[i]])) error++; } System.out.println("RDA (0.0) error = " + error); assertEquals(22, error); error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); RDA rda = new RDA(trainx, trainy, 0.1); if (y[loocv.test[i]] != rda.predict(x[loocv.test[i]])) error++; } System.out.println("RDA (0.1) error = " + error); assertEquals(24, error); error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); RDA rda = new RDA(trainx, trainy, 0.2); if (y[loocv.test[i]] != rda.predict(x[loocv.test[i]])) error++; } System.out.println("RDA (0.2) error = " + error); assertEquals(20, error); error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); RDA rda = new RDA(trainx, trainy, 0.3); if (y[loocv.test[i]] != rda.predict(x[loocv.test[i]])) error++; } System.out.println("RDA (0.3) error = " + error); assertEquals(19, error); error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); RDA rda = new RDA(trainx, trainy, 0.4); if (y[loocv.test[i]] != rda.predict(x[loocv.test[i]])) error++; } System.out.println("RDA (0.4) error = " + error); assertEquals(16, error); error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); RDA rda = new RDA(trainx, trainy, 0.5); if (y[loocv.test[i]] != rda.predict(x[loocv.test[i]])) error++; } System.out.println("RDA (0.5) error = " + error); assertEquals(12, error); error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); RDA rda = new RDA(trainx, trainy, 0.6); if (y[loocv.test[i]] != rda.predict(x[loocv.test[i]])) error++; } System.out.println("RDA (0.6) error = " + error); assertEquals(11, error); error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); RDA rda = new RDA(trainx, trainy, 0.7); if (y[loocv.test[i]] != rda.predict(x[loocv.test[i]])) error++; } System.out.println("RDA (0.7) error = " + error); assertEquals(9, error); error = 0; double[] posteriori = new double[3]; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); RDA rda = new RDA(trainx, trainy, 0.8); if (y[loocv.test[i]] != rda.predict(x[loocv.test[i]], posteriori)) error++; // System.out.println(posteriori[0]+"\t"+posteriori[1]+"\t"+posteriori[2]); } System.out.println("RDA (0.8) error = " + error); assertEquals(6, error); error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); RDA rda = new RDA(trainx, trainy, 0.9); if (y[loocv.test[i]] != rda.predict(x[loocv.test[i]])) error++; } System.out.println("RDA (0.9) error = " + error); assertEquals(3, error); error = 0; for (int i = 0; i < n; i++) { double[][] trainx = Math.slice(x, loocv.train[i]); int[] trainy = Math.slice(y, loocv.train[i]); RDA rda = new RDA(trainx, trainy, 1.0); if (y[loocv.test[i]] != rda.predict(x[loocv.test[i]])) error++; } System.out.println("RDA (1.0) error = " + error); assertEquals(4, error); } catch (Exception ex) { System.err.println(ex); } }