/** * Appends a new keyFrame to the path, with its associated {@code time} (in seconds). * * <p>When {@code setRef} is {@code false} the keyFrame is added by value, meaning that the path * will use the current {@code frame} state. * * <p>When {@code setRef} is {@code true} the keyFrame is given as a reference to a Frame, which * will be connected to the KeyFrameInterpolator: when {@code frame} is modified, the * KeyFrameInterpolator path is updated accordingly. This allows for dynamic paths, where keyFrame * can be edited, even during the interpolation. {@code null} frame references are silently * ignored. The {@link #keyFrameTime(int)} has to be monotonously increasing over keyFrames. */ public void addKeyFrame(GenericFrame frame, float time) { if (frame == null) return; if (keyFrameList.isEmpty()) interpolationTm = time; if ((!keyFrameList.isEmpty()) && (keyFrameList.get(keyFrameList.size() - 1).time() > time)) System.out.println("Error in KeyFrameInterpolator.addKeyFrame: time is not monotone"); else { if (gScene.is3D()) keyFrameList.add(new KeyFrame3D(frame, time)); else keyFrameList.add(new KeyFrame2D(frame, time)); } valuesAreValid = false; pathIsValid = false; currentFrmValid = false; resetInterpolation(); }
/** * Appends a new keyFrame to the path. * * <p>Same as {@link #addKeyFrame(GenericFrame, float)}, except that the {@link * #keyFrameTime(int)} is set to the previous {@link #keyFrameTime(int)} plus one second (or 0.0 * if there is no previous keyFrame). */ public void addKeyFrame(GenericFrame frame) { float time; if (keyFrameList.isEmpty()) time = 0.0f; else time = keyFrameList.get(keyFrameList.size() - 1).time() + 1.0f; addKeyFrame(frame, time); }
/** * Interpolate {@link #frame()} at time {@code time} (expressed in seconds). {@link * #interpolationTime()} is set to {@code time} and {@link #frame()} is set accordingly. * * <p>If you simply want to change {@link #interpolationTime()} but not the {@link #frame()} * state, use {@link #setInterpolationTime(float)} instead. */ public void interpolateAtTime(float time) { this.checkValidity(); setInterpolationTime(time); if ((keyFrameList.isEmpty()) || (frame() == null)) return; if (!valuesAreValid) updateModifiedFrameValues(); updateCurrentKeyFrameForTime(time); if (!splineCacheIsValid) updateSplineCache(); float alpha; float dt = keyFrameList.get(currentFrame2.nextIndex()).time() - keyFrameList.get(currentFrame1.nextIndex()).time(); if (Util.zero(dt)) alpha = 0.0f; else alpha = (time - keyFrameList.get(currentFrame1.nextIndex()).time()) / dt; Vec pos = Vec.add( keyFrameList.get(currentFrame1.nextIndex()).position(), Vec.multiply( Vec.add( keyFrameList.get(currentFrame1.nextIndex()).tgP(), Vec.multiply(Vec.add(pv1, Vec.multiply(pv2, alpha)), alpha)), alpha)); float mag = Util.lerp( keyFrameList.get(currentFrame1.nextIndex()).magnitude(), keyFrameList.get(currentFrame2.nextIndex()).magnitude(), alpha); Rotation q; if (gScene.is3D()) { q = Quat.squad( (Quat) keyFrameList.get(currentFrame1.nextIndex()).orientation(), ((KeyFrame3D) keyFrameList.get(currentFrame1.nextIndex())).tgQ(), ((KeyFrame3D) keyFrameList.get(currentFrame2.nextIndex())).tgQ(), (Quat) keyFrameList.get(currentFrame2.nextIndex()).orientation(), alpha); } else { q = new Rot( Util.lerp( keyFrameList.get(currentFrame1.nextIndex()).orientation().angle(), keyFrameList.get(currentFrame2.nextIndex()).orientation().angle(), (alpha))); } frame().setPositionWithConstraint(pos); frame().setRotationWithConstraint(q); frame().setMagnitude(mag); }
/** * Starts the interpolation process. * * <p>A timer is started with an {@link #interpolationPeriod()} period that updates the {@link * #frame()}'s position, orientation and magnitude. {@link #interpolationStarted()} will return * {@code true} until {@link #stopInterpolation()} or {@link #toggleInterpolation()} is called. * * <p>If {@code period} is positive, it is set as the new {@link #interpolationPeriod()}. The * previous {@link #interpolationPeriod()} is used otherwise (default). * * <p>If {@link #interpolationTime()} is larger than {@link #lastTime()}, {@link * #interpolationTime()} is reset to {@link #firstTime()} before interpolation starts (and * inversely for negative {@link #interpolationSpeed()}. * * <p>Use {@link #setInterpolationTime(float)} before calling this method to change the starting * {@link #interpolationTime()}. * * <p><b>Attention:</b> The keyFrames must be defined (see {@link #addKeyFrame(GenericFrame, * float)}) before you startInterpolation(), or else the interpolation will naturally immediately * stop. */ public void startInterpolation(int myPeriod) { if (myPeriod >= 0) setInterpolationPeriod(myPeriod); if (!keyFrameList.isEmpty()) { if ((interpolationSpeed() > 0.0) && (interpolationTime() >= keyFrameList.get(keyFrameList.size() - 1).time())) setInterpolationTime(keyFrameList.get(0).time()); if ((interpolationSpeed() < 0.0) && (interpolationTime() <= keyFrameList.get(0).time())) setInterpolationTime(keyFrameList.get(keyFrameList.size() - 1).time()); if (keyFrameList.size() > 1) interpolationTimerTask.run(interpolationPeriod()); interpolationStrt = true; update(); } }
/** * Returns the time corresponding to the last keyFrame, expressed in seconds. * * <p> * * @see #firstTime() * @see #duration() * @see #keyFrameTime(int) */ public float lastTime() { if (keyFrameList.isEmpty()) return 0.0f; else return keyFrameList.get(keyFrameList.size() - 1).time(); }
/** * Returns the time corresponding to the first keyFrame, expressed in seconds. * * <p>Returns 0.0 if the path is empty. * * @see #lastTime() * @see #duration() * @see #keyFrameTime(int) */ public float firstTime() { if (keyFrameList.isEmpty()) return 0.0f; else return keyFrameList.get(0).time(); }
/** Intenal use. Call {@link #checkValidity()} and if path is not valid recomputes it. */ protected void updatePath() { checkValidity(); if (!pathIsValid) { path.clear(); int nbSteps = 30; if (keyFrameList.isEmpty()) return; if (!valuesAreValid) updateModifiedFrameValues(); if (keyFrameList.get(0) == keyFrameList.get(keyFrameList.size() - 1)) // TODO experimenting really path.add( new Frame( keyFrameList.get(0).position(), keyFrameList.get(0).orientation(), keyFrameList.get(0).magnitude())); else { KeyFrame[] kf = new KeyFrame[4]; kf[0] = keyFrameList.get(0); kf[1] = kf[0]; int index = 1; kf[2] = (index < keyFrameList.size()) ? keyFrameList.get(index) : null; index++; kf[3] = (index < keyFrameList.size()) ? keyFrameList.get(index) : null; while (kf[2] != null) { Vec pdiff = Vec.subtract(kf[2].position(), kf[1].position()); Vec pvec1 = Vec.add(Vec.multiply(pdiff, 3.0f), Vec.multiply(kf[1].tgP(), (-2.0f))); pvec1 = Vec.subtract(pvec1, kf[2].tgP()); Vec pvec2 = Vec.add(Vec.multiply(pdiff, (-2.0f)), kf[1].tgP()); pvec2 = Vec.add(pvec2, kf[2].tgP()); for (int step = 0; step < nbSteps; ++step) { Frame frame = new Frame(); float alpha = step / (float) nbSteps; frame.setPosition( Vec.add( kf[1].position(), Vec.multiply( Vec.add( kf[1].tgP(), Vec.multiply(Vec.add(pvec1, Vec.multiply(pvec2, alpha)), alpha)), alpha))); if (gScene.is3D()) { frame.setOrientation( Quat.squad( (Quat) kf[1].orientation(), ((KeyFrame3D) kf[1]).tgQ(), ((KeyFrame3D) kf[2]).tgQ(), (Quat) kf[2].orientation(), alpha)); } else { // linear interpolation float start = kf[1].orientation().angle(); float stop = kf[2].orientation().angle(); frame.setOrientation(new Rot(start + (stop - start) * alpha)); } frame.setMagnitude(Util.lerp(kf[1].magnitude(), kf[2].magnitude(), alpha)); path.add(frame.get()); } // Shift kf[0] = kf[1]; kf[1] = kf[2]; kf[2] = kf[3]; index++; kf[3] = (index < keyFrameList.size()) ? keyFrameList.get(index) : null; } // Add last KeyFrame path.add(new Frame(kf[1].position(), kf[1].orientation(), kf[1].magnitude())); } pathIsValid = true; } }