// compute the linear convolution of x and y public static Pair<Var, Var> convolve(Pair<Var, Var> x, Pair<Var, Var> y) { Pair<Var, Var> a = Pair.from(x._1.solidCopy(), x._2.solidCopy()); Pair<Var, Var> b = Pair.from(y._1.solidCopy(), y._2.solidCopy()); for (int i = 0; i < x._1.rowCount(); i++) { a._1.addValue(0.0); a._2.addValue(0.0); b._1.addValue(0.0); b._2.addValue(0.0); } return cconvolve(a, b); }
// compute the inverse FFT of x[], assuming its length is a power of 2 public static Pair<Var, Var> ifft(Pair<Var, Var> x) { int N = x._1.rowCount(); Var im2 = Numeric.from(N, row -> -x._2.value(row)); // compute forward FFT Pair<Var, Var> y = fft(Pair.from(x._1, im2)); // take conjugate again and divide by N Var re3 = Numeric.from(N, row -> y._1.value(row) / N); Var im3 = Numeric.from(N, row -> -y._2.value(row) / N); return Pair.from(re3, im3); }
// compute the circular convolution of x and y public static Pair<Var, Var> cconvolve(Pair<Var, Var> x, Pair<Var, Var> y) { int len = x._1.rowCount(); // should probably pad x and y with 0s so that they have same length // and are powers of 2 if ((x._2.rowCount() != len)) { throw new RuntimeException("Dimensions don't agree"); } int N = x._1.rowCount(); // compute FFT of each sequence Pair<Var, Var> a = fft(x); Pair<Var, Var> b = fft(y); // point-wise multiply Pair<Var, Var> c = Pair.from(Numeric.fill(len, 0.0), Numeric.fill(len, 0.0)); for (int i = 0; i < N; i++) { c._1.setValue(i, a._1.value(i) * b._1.value(i) - a._2.value(i) * b._2.value(i)); c._2.setValue(i, a._1.value(i) * b._2.value(i) + a._1.value(i) * b._2.value(i)); } // compute inverse FFT return ifft(c); }
// compute the FFT of x[], assuming its length is a power of 2 public static Pair<Var, Var> fft(Pair<Var, Var> x) { int N = x._1.rowCount(); // base case if (N == 1) return x; // radix 2 Cooley-Tukey FFT if (N % 2 != 0) { throw new RuntimeException("N is not a power of 2"); } // fft of even terms Mapping evenMap = Mapping.empty(); for (int k = 0; k < N / 2; k++) { evenMap.add(2 * k); } Pair<Var, Var> even = Pair.from(x._1.mapRows(evenMap), x._2.mapRows(evenMap)); Pair<Var, Var> q = fft(even); // fft of odd terms Mapping oddMap = Mapping.empty(); for (int k = 0; k < N / 2; k++) { oddMap.add(2 * k + 1); } Pair<Var, Var> r = fft(Pair.from(x._1.mapRows(oddMap), x._2.mapRows(oddMap))); // combine Var rey = Numeric.fill(N, 0.0); Var imy = Numeric.fill(N, 0.0); for (int k = 0; k < N / 2; k++) { double kth = -2 * k * Math.PI / N; double coskth = Math.cos(kth); double sinkth = Math.sin(kth); rey.setValue(k, q._1.value(k) + coskth * r._1.value(k) - sinkth * r._2.value(k)); imy.setValue(k, q._2.value(k) + coskth * r._2.value(k) + sinkth * r._1.value(k)); rey.setValue(k + N / 2, q._1.value(k) - coskth * r._1.value(k) + sinkth * r._2.value(k)); imy.setValue(k + N / 2, q._2.value(k) - coskth * r._2.value(k) - sinkth * r._1.value(k)); } return Pair.from(rey, imy); }