/** * calculates the center of mass using <code>colorForTrackingHSV</code> and <code>colorRadius * </code> as radius (in HSV-color space) * * @param hsv the frame of which the center of mass should be calculated off * @return the center of mass as a point in pixel coordinates (i.e. integer) */ public Point calcCenterOfMass(Mat hsv) { blackWhiteMask = new Mat(); Core.inRange(hsv, lowerBound, upperBound, blackWhiteMask); dilatedMask = new Mat(); Imgproc.dilate(blackWhiteMask, dilatedMask, new Mat()); contour = new ArrayList<MatOfPoint>(); Mat mHierarchy = new Mat(); Mat tempDilatedMask = dilatedMask.clone(); Imgproc.findContours( tempDilatedMask, contour, mHierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); boundingRect = Imgproc.boundingRect(findLargestContour(contour)); int centerOfMassX = boundingRect.x + boundingRect.width / 2; int centerOfMassY = boundingRect.y + boundingRect.height / 2; Point centerOfMass = new Point(centerOfMassX, centerOfMassY); trackPath.add(centerOfMass); return centerOfMass; }
/** * Creates Resistor objects for all resistors extracted from given contours. Optionally, also * displays a bounding rectangle for all contours in the top left frame of the GUI. * * @param contours The contours defining the resistors * @param image The image from which the contours were extracted * @param showBoundingRect If true draws a bounding rectange for each contour * @return A list of Resistor objects */ private List<Resistor> extractResistorsFromContours( List<MatOfPoint> contours, Mat image, boolean showBoundingRect) { List<Mat> extractedResistors = new ArrayList<Mat>(); List<Rect> boundingRect = new ArrayList<Rect>(); List<Resistor> resistors = new ArrayList<Resistor>(); for (int i = 0; i < contours.size(); i++) { // bounding rectangle boundingRect.add(Imgproc.boundingRect(contours.get(i))); Mat mask = Mat.zeros(image.size(), CvType.CV_8U); Imgproc.drawContours(mask, contours, i, new Scalar(255), Core.FILLED); Mat contourRegion; Mat imageROI = new Mat(); image.copyTo(imageROI, mask); contourRegion = new Mat(imageROI, boundingRect.get(i)); extractedResistors.add(contourRegion); // the center of the resistor as a point within the original captured image Point resistorCenterPoint = findCenter(contours.get(i)); // create a new resistor entry Resistor r = new Resistor(resistorCenterPoint, contourRegion); resistors.add(r); } if (showBoundingRect) { Mat drawing = new Mat(); image.copyTo(drawing); for (int i = 0; i < contours.size(); i++) { Core.rectangle( drawing, boundingRect.get(i).tl(), boundingRect.get(i).br(), new Scalar(0, 0, 255), 2); } paintTL(drawing); } return resistors; }
/** * Extracts and classifies colour bands for each Resistor. Each ColourBand object is instantiated * and linked to their parent Resistor object. * * @param resistorList A list of Resistor objects from which to extract the colour bands * @param paintDebugInfo If ture, the extracted colour band ROIs are displayed on the GUI */ private void extractColourBandsAndClassify(List<Resistor> resistorList, boolean paintDebugInfo) { if (resistorList.size() > 0) { for (int r = 0; r < resistorList.size(); r++) { Mat resImg = resistorList.get(r).resistorMat; Mat imgHSV = new Mat(); Mat satImg = new Mat(); Mat hueImg = new Mat(); // convert to HSV Imgproc.cvtColor(resImg, imgHSV, Imgproc.COLOR_BGR2HSV); ArrayList<Mat> channels = new ArrayList<Mat>(); Core.split(imgHSV, channels); // extract channels satImg = channels.get(1); // saturation hueImg = channels.get(0); // hue // threshold saturation channel Mat threshedROISatBands = new Mat(); // ~130 sat thresh val Imgproc.threshold(satImg, threshedROISatBands, SAT_BAND_THRESH, 255, Imgproc.THRESH_BINARY); // threshold hue channel Mat threshedROIHueBands = new Mat(); // ~50 hue thresh val Imgproc.threshold(hueImg, threshedROIHueBands, HUE_BAND_THRESH, 255, Imgproc.THRESH_BINARY); // combine the thresholded binary images Mat bandROI = new Mat(); Core.bitwise_or(threshedROIHueBands, threshedROISatBands, bandROI); // find contours in binary ROI image ArrayList<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Mat hierarchy = new Mat(); Imgproc.findContours( bandROI, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE, new Point(0, 0)); // remove any remaining noise by only keeping contours which area > threshold for (int i = 0; i < contours.size(); i++) { double area = Imgproc.contourArea(contours.get(i)); if (area < MIN_BAND_AREA) { contours.remove(i); i--; } } // create a ColourBand object for each detected band // storing its center, the contour and the bandROI for (int i = 0; i < contours.size(); i++) { MatOfPoint contour = contours.get(i); // extract this colour band and store in a Mat Rect boundingRect = Imgproc.boundingRect(contour); Mat mask = Mat.zeros(bandROI.size(), CvType.CV_8U); Imgproc.drawContours(mask, contours, i, new Scalar(255), Core.FILLED); Mat imageROI = new Mat(); resImg.copyTo(imageROI, mask); Mat colourBandROI = new Mat(imageROI, boundingRect); // instantiate new ColourBand object ColourBand cb = new ColourBand(findCenter(contour), contour, colourBandROI); // cluster the band colour cb.clusterBandColour(BAND_COLOUR_K_MEANS); // classify using the Lab colourspace as feature vector Mat sampleMat = new Mat(1, 3, CvType.CV_32FC1); // create a Mat contacting the clustered band colour sampleMat.put(0, 0, cb.clusteredColourLAB[0]); sampleMat.put(0, 1, cb.clusteredColourLAB[1]); sampleMat.put(0, 2, cb.clusteredColourLAB[2]); Mat classifiedValue = new Mat(1, 1, CvType.CV_32FC1); Mat neighborResponses = new Mat(); // dont actually use this Mat dists = new Mat(); // dont actually use this // classify knn.find_nearest(sampleMat, 3, classifiedValue, neighborResponses, dists); // cast classified value into Colour enum and store cb.classifiedColour = ColourEnumVals[(int) classifiedValue.get(0, 0)[0]]; // add the band to the parent resistor resistorList.get(r).bands.add(cb); } // paint the extracted band ROIs if (paintDebugInfo) { Mat finalBandROIMask = Mat.zeros(bandROI.size(), CvType.CV_8U); for (int i = 0; i < contours.size(); i++) { Scalar color = new Scalar(255, 255, 255); Imgproc.drawContours( finalBandROIMask, contours, i, color, -1, 4, hierarchy, 0, new Point()); } Mat colourROI = new Mat(); resImg.copyTo(colourROI, finalBandROIMask); paintResistorSubRegion(colourROI, r); } } } }
/** * detection_contours, détecte les contours, les affiches et gères le traitement * d'authentification * * @param inmat : la matrice qui arrive pour la detection de contour * @param outmat : la matrice qui sort après les comptours */ public void detection_contours(Mat inmat, Mat outmat) { Mat v = new Mat(); Mat vv = outmat.clone(); List<MatOfPoint> contours = new ArrayList(); // Tous les contours int key; // Plus gros contours MatOfInt hullI = new MatOfInt(); List<MatOfPoint> hullP = new ArrayList<MatOfPoint>(); Rect r; // Rectangle du plus gros contours // Trouve tous les contours Imgproc.findContours(vv, contours, v, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); // Calcul l'indice du plus gros contours key = findBiggestContour(contours); // S'il y a au moins un contours et le if (key != 0) { Imgproc.drawContours(inmat, contours, key, new Scalar(0, 0, 255)); r = Imgproc.boundingRect(contours.get(key)); Core.rectangle(currentFrame, r.br(), r.tl(), new Scalar(0, 255, 0), 1); } // Calcul les points convexes de la main Imgproc.convexHull(contours.get(key), hullI, false); // S'il y a des points de convexion if (hullI != null) { // Reinitialise les points de convexion hullP.clear(); // On calcule le nombres de points de convexion for (int i = 0; contours.size() >= i; i++) hullP.add(new MatOfPoint()); int[] cId = hullI.toArray(); // On récupère dans un tableau de points, les points du contours Point[] contourPts = contours.get(key).toArray(); // Réinitialisation des points de recherche dans les tableau int findRectA = 0; int findRectB = 0; int findRectC = 0; int findRectD = 0; // Pour chaque point de convexion for (int i = 0; i < cId.length; i++) { // Dessin du point de convexion sur la matrice Core.circle(inmat, contourPts[cId[i]], 2, new Scalar(241, 247, 45), -3); // Si le point de convexion se trouve dans un des carrés // on incrémente le compteur associé if (isInRectangle(rectA, contourPts[cId[i]])) findRectA++; else if (isInRectangle(rectB, contourPts[cId[i]])) findRectB++; else if (isInRectangle(rectC, contourPts[cId[i]])) findRectC++; else if (isInRectangle(rectD, contourPts[cId[i]])) findRectD++; } // Si on a trouvé la main dans le rectangle A if (findRectA >= 5) { if (cptRect == 0) { numeroRect[cptRect] = 1; cptRect++; System.out.println("Haut gauche"); } else { if (numeroRect[cptRect - 1] != 1) { numeroRect[cptRect] = 1; if (cptRect == 3) cptRect = 0; else cptRect++; System.out.println("Haut gauche"); } } } // Si on a trouvé la main dans le rectangle B if (findRectB >= 5) { if (cptRect == 0) { numeroRect[cptRect] = 2; cptRect++; System.out.println("Bas gauche"); } else { if (numeroRect[cptRect - 1] != 2) { numeroRect[cptRect] = 2; if (cptRect == 3) cptRect = 0; else cptRect++; System.out.println("Bas gauche"); } } } // Si on a trouvé la main dans le rectangle C if (findRectC >= 5) { if (cptRect == 0) { numeroRect[cptRect] = 3; if (cptRect == 3) cptRect = 0; else cptRect++; System.out.println("Haut droite"); } else { if (numeroRect[cptRect - 1] != 3) { numeroRect[cptRect] = 3; if (cptRect == 3) cptRect = 0; else cptRect++; System.out.println("Haut droite"); } } } // Si on a trouvé la main dans le rectangle D if (findRectD >= 5) { if (cptRect == 0) { numeroRect[cptRect] = 4; cptRect++; System.out.println("Bas droite"); } else { if (numeroRect[cptRect - 1] != 4) { numeroRect[cptRect] = 4; if (cptRect == 3) cptRect = 0; else cptRect++; System.out.println("Bas droite"); } } } // Si on a sélectionné 3 fenètres et que cela correspond au mot de passe // MOT DE PASSE : Haut Gauche - Bas Droite - Bas Gauche if (cptRect == 3) { if ((numeroRect[0] == 1) && (numeroRect[1] == 4) && (numeroRect[2] == 2)) this.jTextField2.setText("Authenticated"); // Réinitilisation du compteur cptRect = 0; } } }
/** * Determines which pieces are kings * * @param in Mat image of board */ public void determineKings(Mat in) { int playSquares = 32; Mat dst = new Mat(in.rows(), in.cols(), in.type()); in.copyTo(dst); Imgproc.cvtColor(dst, dst, Imgproc.COLOR_BGR2GRAY); // change to single color Mat canny = new Mat(); Imgproc.Canny(dst, canny, 100, 200); // make image a canny image that is only edges; 2,4 // lower threshold values find more edges List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Mat hierarchy = new Mat(); // holds nested contour information Imgproc.findContours( canny, contours, hierarchy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); // Imgproc.RETR_LIST, TREE // draw contour image Mat mask = new Mat(); mask = Mat.zeros(dst.size(), dst.type()); Imgproc.drawContours( mask, contours, -1, new Scalar(255, 255, 255), 1, 8, hierarchy, 2, new Point()); Highgui.imwrite("contours.jpg", mask); ArrayList occupied = new ArrayList<Integer>(); for (int i = 0; i < playSquares; i++) { if (board[i] != 0) occupied.add(i); } for (int i = 0; i < contours.size(); i++) // assuming only contours are checker pieces { // determine if it should be a king // use Rect r = Imgproc.boundingRect then find height of it by r.height // Get bounding rect of contour Rect bound = Imgproc.boundingRect(contours.get(i)); if (bound.height > in.rows() / 8) { // board[(int) occupied.get(0)]++; // make it a king // occupied.remove(0); } } // or apply to each region of interest /* // keep track of starting row square int parity = 0; // 0 is even, 1 is odd, tied to row number int count = 0; // row square int rowNum = 0; // row number, starting at 0 int vsegment = in.rows() / 8; // only accounts 8 playable int hsegment = in.cols() / 12; // 8 playable, 2 capture, 2 extra int offset = hsegment * 2; // offset for playable board // For angle of camera int dx = 48; hsegment -= 8; // Go through all playable squares for (int i = 0; i < playSquares; i++) { // change offset depending on the row if (parity == 0) // playable squares start on immediate left offset = hsegment * 3 + dx; else // playable squares start on 2nd square from left offset = hsegment * 2 + dx; // find where roi should be Point p1 = new Point(offset + count * hsegment, rowNum * vsegment); // top left point of rectangle (x,y) Point p2 = new Point(offset + (count + 1) * hsegment, (rowNum + 1) * vsegment); // bottom right point of rectangle (x,y) // create rectangle that is board square Rect bound = new Rect(p1, p2); // frame only includes rectangle Mat roi = new Mat(in, bound); Imgproc.cvtColor(roi, roi, Imgproc.COLOR_BGR2GRAY); // change to single color Mat canny = new Mat(); Imgproc.Canny(roi, canny, 2, 4); // make image a canny image that is only edges; 2,4 // lower threshold values find more edges List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Mat hierarchy = new Mat(); // holds nested contour information Imgproc.findContours(canny, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); // Imgproc.RETR_LIST, TREE // Get bounding rect of contour Rect rect = Imgproc.boundingRect(contours.get(0)); if (rect.height > in.rows() / 8) { board[i]++; // make it a king } count += 2; if (count == 8) { parity = ++parity % 2; // change odd or even count = 0; rowNum++; hsegment += 1; dx -= 6; } }*/ }
public Mat onCameraFrame(CvCameraViewFrame inputFrame) { mRgba = inputFrame.rgba(); // convert to Gray scale Imgproc.cvtColor(mRgba, img_gray, Imgproc.COLOR_BGR2GRAY); // make it binary with threshold=100 Imgproc.threshold(img_gray, erd, 100, 255, Imgproc.THRESH_OTSU); // remove pixel noise by "erode" with structuring element of 9X9 Mat erode = Imgproc.getStructuringElement(Imgproc.MORPH_ERODE, new Size(9, 9)); Imgproc.erode(erd, tgt, erode); // apply "dilation" to enlarge object Mat dilate = Imgproc.getStructuringElement(Imgproc.MORPH_DILATE, new Size(9, 9)); Imgproc.dilate(tgt, erd, dilate); // take a window Size s = erd.size(); int W = (int) s.width; int H = (int) s.height; Rect r = new Rect(0, H / 2 - 100, W, 200); Mat mask = new Mat(s, CvType.CV_8UC1, new Scalar(0, 0, 0)); rectangle(mask, r.tl(), r.br(), new Scalar(255, 255, 255), -1); erd.copyTo(window, mask); // find the contours Imgproc.findContours(window, contours, dest, 0, 2); // find largest contour int maxContour = -1; double area = 0; for (int i = 0; i < contours.size(); i++) { double contArea = Imgproc.contourArea(contours.get(i)); if (contArea > area) { area = contArea; maxContour = i; } } // form bounding rectangle for largest contour Rect rect = null; if (maxContour > -1) rect = Imgproc.boundingRect(contours.get(maxContour)); // position to center while (!train) { if (rect != null) { Imgproc.rectangle(mRgba, rect.tl(), rect.br(), new Scalar(255, 255, 255), 5); if ((rect.x + rect.width / 2) > W / 2 - 20 && (rect.x + rect.width / 2) < W / 2 + 20) { runOnUiThread( new Runnable() { @Override public void run() { Toast.makeText(getApplicationContext(), "OK", Toast.LENGTH_SHORT).show(); } }); train = true; } } if (contours != null) contours.clear(); return mRgba; } if (train) { if (rect != null) { Imgproc.rectangle(mRgba, rect.tl(), rect.br(), new Scalar(255, 255, 255), 5); // direction of movement int thr = 100; if ((rect.x + rect.width / 2) < (W / 2 - thr)) { // move to the RIGHT uHandler.obtainMessage(MainActivity.LEFT).sendToTarget(); } else { if ((rect.x + rect.width / 2) > (W / 2 + thr)) { uHandler.obtainMessage(MainActivity.RIGHT).sendToTarget(); } else { uHandler.obtainMessage(MainActivity.FORWARD).sendToTarget(); } } } else { // stop moving uHandler.obtainMessage(MainActivity.STOP).sendToTarget(); } } if (contours != null) contours.clear(); return mRgba; }
public void processImage(Mat imageToProcess) { try { final Mat processedImage = imageToProcess.clone(); // red final Mat redUpper = new Mat(); final Mat redLower = new Mat(); Core.inRange(processedImage, new Scalar(170, 100, 20), new Scalar(180, 255, 255), redUpper); Core.inRange(processedImage, new Scalar(0, 100, 20), new Scalar(20, 255, 255), redLower); Core.bitwise_or(redLower, redUpper, processedImage); // refining the binary image Imgproc.erode(processedImage, processedImage, new Mat(), new Point(-1, -1), 1); Imgproc.dilate(processedImage, processedImage, new Mat(), new Point(-1, -1), 0); // create a clone for the processedImage to be used in finding contours final Mat clone = processedImage.clone(); Imgproc.cvtColor(processedImage, processedImage, Imgproc.COLOR_GRAY2RGB); // finds list of contours and draw the biggest on the processedImage final Scalar color1 = new Scalar(0, 0, 255); final Scalar color2 = new Scalar(255, 255, 0); final Scalar color3 = new Scalar(255, 255, 255); final List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Imgproc.findContours( clone, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_NONE); final List<MatOfPoint> contour = new ArrayList<MatOfPoint>(1); double maxArea = 0.0; for (int index = 0; index < contours.size(); index++) { double area = Imgproc.contourArea(contours.get(index)); if (area > maxArea && area > 25 && Imgproc.boundingRect(contours.get(index)).y > 40) { maxArea = area; contour.add(0, contours.get(index)); } } // finds bounding Rectangle and draws contours Rect boundingRect = new Rect(); if (contour.size() > 0) { Imgproc.drawContours(processedImage, contour, -2, color1); boundingRect = Imgproc.boundingRect(contour.get(0)); final double x = boundingRect.x; final double y = boundingRect.y; final double width = boundingRect.width; final double height = boundingRect.height; Core.rectangle(processedImage, new Point(x, y), new Point(x + width, y + height), color3); } // finding bounding Circle and draws it final Point center = new Point(); final float[] radius = new float[1]; if (contour.size() > 0) { final MatOfPoint2f contour2f = new MatOfPoint2f(contour.get(0).toArray()); Imgproc.minEnclosingCircle(contour2f, center, radius); Core.circle(processedImage, center, (int) radius[0], color2); } final BallStruct redBallStruct = new BallStruct(boundingRect, center, (double) radius[0]); final BallTargeting ballTargeting = new BallTargeting(redBallStruct); synchronized (this) { distanceToRed = ballTargeting.getDistance(); angleToRedInDegrees = ballTargeting.getAngle() * (180 / Math.PI); this.processedImage = processedImage; } } catch (Exception e) { } }
public MatOfPoint getContourOfBestMatch() { if (matches == null) return null; Mat threshold = new Mat(imgGray.size(), imgGray.type()); Imgproc.threshold(imgGray, threshold, 70, 255, Imgproc.THRESH_TOZERO); List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Imgproc.findContours( threshold, contours, new Mat(), Imgproc.RETR_CCOMP, Imgproc.CHAIN_APPROX_NONE); // HashMap<Integer,MatOfPoint> coordinates = computeCoord(contours,) if (contours.size() == 0) return null; List<DMatch> matchList = matches.toList(); List<KeyPoint> keyPointList = keyPointImg.toList(); HashMap<Integer, Double> contourDensityMap = new HashMap<Integer, Double>(); Log.i("getContourBestMatch::", "contour size::" + contours.size()); for (int idx = 0; idx < contours.size(); idx++) { MatOfPoint2f ctr2f = new MatOfPoint2f(contours.get(idx).toArray()); // double contourarea = Imgproc.contourArea(contours.get(idx)); double contourarea = contours.get(idx).rows(); if (contourarea < 50) continue; Rect r = Imgproc.boundingRect(contours.get(idx)); double count = 0; // Log.i("contour area","contour area is::"+contourarea); for (DMatch match : matchList) { Point q = keyPointList.get(match.queryIdx).pt; if (q.x >= r.x && q.x <= (r.x + r.width) && q.y >= r.y && q.y <= (r.y + r.height)) count++; // // if(Imgproc.pointPolygonTest(ctr2f,keyPointList.get(match.queryIdx).pt,true)>0){ // if(null ==contourDensityMap.get(idx)) // contourDensityMap.put(idx,1.0); // // else{ // contourDensityMap.put(idx,((Double)contourDensityMap.get(idx))+1); // } // // } } // if(contourDensityMap.containsKey(idx)) { // // Log.i("contourPoint","idx::"+idx+"count::"+contourDensityMap.get(idx)+"contour // area::"+contourarea); // contourDensityMap.put(idx, contourDensityMap.get(idx) / contourarea); // } if (count != 0) { contourDensityMap.put(idx, count / contourarea); } } Log.i("MarkerTracker", "contour density size::" + contourDensityMap.size()); Map.Entry<Integer, Double> maxEntry = null; for (Map.Entry<Integer, Double> entry : contourDensityMap.entrySet()) { Log.i("contourDensityMap", "Entry value::" + entry.getValue()); if (maxEntry == null || entry.getValue().compareTo(maxEntry.getValue()) > 0) { maxEntry = entry; } } Log.i("maxEntry::", "" + (maxEntry == null ? null : maxEntry.getKey())); // return contours; return contours.get(maxEntry != null ? maxEntry.getKey() : 0); }
public static void Circle(List<MatOfPoint> contours, int index) { int i = index; Mat mRGBA = new Mat(); Utils.bitmapToMat(image, mRGBA); // cyklus s podmienkou na konci do { int buff[] = new int[4]; hierarchy.get(0, i, buff); // Get contour form list Mat contour = contours.get(i); // id kont�ry int id = i; // dostaneme �a��ie id kont�ry i = buff[0]; // zis�ujeme �i m�me dostato�ne ve�k� kont�ru aby sme sa �ou v�bec zaoberali if (Imgproc.contourArea(contour) > 500) { List<Point> points = new ArrayList<Point>(); // dostaneme celkov� po�et kont�r int num = (int) contour.total(); // vytvor�me si pole o dvojn�sobnej ve�kosti samotnej kontury int temp[] = new int[num * 2]; // na��tame si kont�ru do do�asnej premennej contour.get(0, 0, temp); // konvertujeme List<Point> do MatOfPoint2f pre pou�itie fitEllipse for (int j = 0; j < num * 2; j = j + 2) { points.add(new Point(temp[j], temp[j + 1])); } MatOfPoint2f specialPointMtx = new MatOfPoint2f(points.toArray(new Point[0])); // do premennej bound uklad�me dokonal� elipsu RotatedRect bound = Imgproc.fitEllipse(specialPointMtx); // Vypo��ta sa hodnota pi double pi = Imgproc.contourArea(contour) / ((bound.size.height / 2) * (bound.size.width / 2)); // zis�ujeme toleranciu pi - zaoplenie if (Math.abs(pi - 3.14) > 0.03) { int k = buff[2]; // zis�ujeme �i existuje nejak� rodi� kont�ry if (k != -1) { Circle(contours, k); } continue; } // konvertujeme MatOfPoint2f do MatOfPoint pre funckiu fitEllipse - rozdie� je len v 32-bit // float a 32-bit int MatOfPoint NewMtx = new MatOfPoint(specialPointMtx.toArray()); // dostaneme s�radnice najmen�ieho mo�n�ho �tvorca Rect box = Imgproc.boundingRect(NewMtx); // nacita obrazok znova Mat mat_for_count = new Mat(); Utils.bitmapToMat(image, mat_for_count); // vytvori sa klon stvorca - dobry kandidat pre vyhladanie Mat candidate = ((mat_for_count).submat(box)).clone(); // napln maticu binarnou ciernou Mat mask = new Mat(box.size(), candidate.type(), new Scalar(0, 0, 0)); // naplni ciernu plochu bielimi konturami Imgproc.drawContours( mask, contours, id, new Scalar(255, 255, 255), -1, 8, hierarchy, 0, new Point(-box.x, -box.y)); // ulozi sa kandidat Mat roi = new Mat(candidate.size(), candidate.type(), new Scalar(255, 255, 255)); // ulozia sa len informacie o kandidatovi candidate.copyTo(roi, mask); double longAxis; double shortAxis; // ziska dve osy elipsy if (bound.size.height < bound.size.width) { shortAxis = bound.size.height / 2; longAxis = bound.size.width / 2; } else { shortAxis = bound.size.width / 2; longAxis = bound.size.height / 2; } // zastavi sa vyhladavanie pokial je elipsa prilis ovalna if ((longAxis / shortAxis) < 2.0) { signList.add(roi); boxList.add(box); } } // zis�uje sa �i je tam e�te �al�� kandid�t } while (i != -1); }