/**
   * Retransmits a packet to {@link #channel}. If the destination supports the RTX format, the
   * packet will be encapsulated in RTX, otherwise, the packet will be retransmitted as-is.
   *
   * @param pkt the packet to retransmit.
   * @param after the {@code TransformEngine} in the chain of {@code TransformEngine}s of the
   *     associated {@code MediaStream} after which the injection of {@code pkt} is to begin
   * @return {@code true} if the packet was successfully retransmitted, {@code false} otherwise.
   */
  public boolean retransmit(RawPacket pkt, TransformEngine after) {
    boolean destinationSupportsRtx = channel.getRtxPayloadType() != -1;
    boolean retransmitPlain;

    if (destinationSupportsRtx) {
      long rtxSsrc = getPairedSsrc(pkt.getSSRC());

      if (rtxSsrc == -1) {
        logger.warn("Cannot find SSRC for RTX, retransmitting plain.");
        retransmitPlain = true;
      } else {
        retransmitPlain = !encapsulateInRtxAndTransmit(pkt, rtxSsrc);
      }
    } else {
      retransmitPlain = true;
    }

    if (retransmitPlain) {
      MediaStream mediaStream = channel.getStream();

      if (mediaStream != null) {
        try {
          mediaStream.injectPacket(pkt, /* data */ true, after);
        } catch (TransmissionFailedException tfe) {
          logger.warn("Failed to retransmit a packet.");
          return false;
        }
      }
    }

    return true;
  }
  /**
   * Tries to find an SSRC paired with {@code ssrc} in an FID group in one of the channels from
   * {@link #channel}'s {@code Content}. Returns -1 on failure.
   *
   * @param pkt the {@code RawPacket} that holds the RTP packet for which to find a paired SSRC.
   * @return An SSRC paired with {@code ssrc} in an FID group, or -1.
   */
  private long getRtxSsrc(RawPacket pkt) {
    StreamRTPManager receiveRTPManager =
        channel.getStream().getRTPTranslator().findStreamRTPManagerByReceiveSSRC(pkt.getSSRC());

    MediaStreamTrackReceiver receiver = null;
    if (receiveRTPManager != null) {
      MediaStream receiveStream = receiveRTPManager.getMediaStream();
      if (receiveStream != null) {
        receiver = receiveStream.getMediaStreamTrackReceiver();
      }
    }

    if (receiver == null) {
      return -1;
    }

    RTPEncoding encoding = receiver.resolveRTPEncoding(pkt);
    if (encoding == null) {
      logger.warn(
          "encoding_not_found"
              + ",stream_hash="
              + channel.getStream().hashCode()
              + " ssrc="
              + pkt.getSSRCAsLong());
      return -1;
    }

    return encoding.getRTXSSRC();
  }
  /**
   * Removes the RTX encapsulation from a packet.
   *
   * @param pkt the packet to remove the RTX encapsulation from.
   * @return the original media packet represented by {@code pkt}, or null if we couldn't
   *     reconstruct the original packet.
   */
  private RawPacket deRtx(RawPacket pkt) {
    boolean success = false;

    if (pkt.getPayloadLength() - pkt.getPaddingSize() < 2) {
      // We need at least 2 bytes to read the OSN field.
      if (logger.isDebugEnabled()) {
        logger.debug("Dropping an incoming RTX packet with padding only: " + pkt);
      }
      return null;
    }

    long mediaSsrc = getPrimarySsrc(pkt);
    if (mediaSsrc != -1) {
      if (rtxAssociatedPayloadType != -1) {
        int osn = pkt.getOriginalSequenceNumber();
        // Remove the RTX header by moving the RTP header two bytes
        // right.
        byte[] buf = pkt.getBuffer();
        int off = pkt.getOffset();
        System.arraycopy(buf, off, buf, off + 2, pkt.getHeaderLength());

        pkt.setOffset(off + 2);
        pkt.setLength(pkt.getLength() - 2);

        pkt.setSSRC((int) mediaSsrc);
        pkt.setSequenceNumber(osn);
        pkt.setPayloadType(rtxAssociatedPayloadType);
        success = true;
      } else {
        logger.warn(
            "RTX packet received, but no APT is defined. Packet "
                + "SSRC "
                + pkt.getSSRCAsLong()
                + ", associated media"
                + " SSRC "
                + mediaSsrc);
      }
    }

    // If we failed to handle the RTX packet, drop it.
    return success ? pkt : null;
  }
  /**
   * Returns the SSRC paired with <tt>ssrc</tt> in an FID source-group, if any. If none is found,
   * returns -1.
   *
   * @return the SSRC paired with <tt>ssrc</tt> in an FID source-group, if any. If none is found,
   *     returns -1.
   */
  private long getPrimarySsrc(RawPacket pkt) {
    MediaStreamTrackReceiver receiver = channel.getStream().getMediaStreamTrackReceiver();

    if (receiver == null) {
      if (logger.isDebugEnabled()) {
        logger.debug("Dropping an incoming RTX packet from an unknown source.");
      }
      return -1;
    }

    RTPEncoding encoding = receiver.resolveRTPEncoding(pkt);
    if (encoding == null) {
      if (logger.isDebugEnabled()) {
        logger.debug("Dropping an incoming RTX packet from an unknown source.");
      }
      return -1;
    }

    return encoding.getPrimarySSRC();
  }
  /**
   * Encapsulates {@code pkt} in the RTX format, using {@code rtxSsrc} as its SSRC, and transmits it
   * to {@link #channel} by injecting it in the {@code MediaStream}.
   *
   * @param pkt the packet to transmit.
   * @param rtxSsrc the SSRC for the RTX stream.
   * @return {@code true} if the packet was successfully retransmitted, {@code false} otherwise.
   */
  private boolean encapsulateInRtxAndTransmit(RawPacket pkt, long rtxSsrc) {
    byte[] buf = pkt.getBuffer();
    int len = pkt.getLength();
    int off = pkt.getOffset();
    byte[] newBuf = buf;
    if (buf.length < len + 2) {
      // FIXME The byte array newly allocated and assigned to newBuf must
      // be made known to pkt eventually.
      newBuf = new byte[len + 2];
    }

    int osn = pkt.getSequenceNumber();
    int headerLength = pkt.getHeaderLength();
    int payloadLength = len - headerLength;
    System.arraycopy(buf, off, newBuf, 0, headerLength);
    // FIXME If newBuf is actually buf, then we will override the first two
    // bytes of the payload bellow.
    newBuf[headerLength] = (byte) ((osn >> 8) & 0xff);
    newBuf[headerLength + 1] = (byte) (osn & 0xff);
    System.arraycopy(buf, off + headerLength, newBuf, headerLength + 2, payloadLength);
    // FIXME We tried to extend the payload of pkt by two bytes above but
    // we never told pkt that its length has increased by these two bytes.

    MediaStream mediaStream = channel.getStream();
    if (mediaStream != null) {
      pkt.setSSRC((int) rtxSsrc);
      // Only call getNextRtxSequenceNumber() when we're sure we're going
      // to transmit a packet, because it consumes a sequence number.
      pkt.setSequenceNumber(getNextRtxSequenceNumber(rtxSsrc));
      try {
        mediaStream.injectPacket(pkt, /* data */ true, /* after */ null);
      } catch (TransmissionFailedException tfe) {
        logger.warn("Failed to transmit an RTX packet.");
        return false;
      }
    }

    return true;
  }
  /**
   * Encapsulates {@code pkt} in the RTX format, using {@code rtxSsrc} as its SSRC, and transmits it
   * to {@link #channel} by injecting it in the {@code MediaStream}.
   *
   * @param pkt the packet to transmit.
   * @param rtxSsrc the SSRC for the RTX stream.
   * @param after the {@code TransformEngine} in the chain of {@code TransformEngine}s of the
   *     associated {@code MediaStream} after which the injection of {@code pkt} is to begin
   * @return {@code true} if the packet was successfully retransmitted, {@code false} otherwise.
   */
  private boolean encapsulateInRtxAndTransmit(RawPacket pkt, long rtxSsrc, TransformEngine after) {
    byte[] buf = pkt.getBuffer();
    int len = pkt.getLength();
    int off = pkt.getOffset();

    byte[] newBuf = new byte[len + 2];
    RawPacket rtxPkt = new RawPacket(newBuf, 0, len + 2);

    int osn = pkt.getSequenceNumber();
    int headerLength = pkt.getHeaderLength();
    int payloadLength = pkt.getPayloadLength();

    // Copy the header.
    System.arraycopy(buf, off, newBuf, 0, headerLength);

    // Set the OSN field.
    newBuf[headerLength] = (byte) ((osn >> 8) & 0xff);
    newBuf[headerLength + 1] = (byte) (osn & 0xff);

    // Copy the payload.
    System.arraycopy(buf, off + headerLength, newBuf, headerLength + 2, payloadLength);

    MediaStream mediaStream = channel.getStream();
    if (mediaStream != null) {
      rtxPkt.setSSRC((int) rtxSsrc);
      rtxPkt.setPayloadType(rtxPayloadType);
      // Only call getNextRtxSequenceNumber() when we're sure we're going
      // to transmit a packet, because it consumes a sequence number.
      rtxPkt.setSequenceNumber(getNextRtxSequenceNumber(rtxSsrc));
      try {
        mediaStream.injectPacket(rtxPkt, /* data */ true, after);
      } catch (TransmissionFailedException tfe) {
        logger.warn("Failed to transmit an RTX packet.");
        return false;
      }
    }

    return true;
  }
  /**
   * Sets the simulcast layers for this receiver and fires an event about it.
   *
   * @param simulcastLayers the simulcast layers for this receiver.
   */
  public void setSimulcastLayers(SimulcastLayer[] simulcastLayers) {
    this.simulcastLayers = simulcastLayers;

    if (logger.isInfoEnabled()) {
      if (simulcastLayers == null) {
        logInfo("Simulcast disabled.");
      } else {
        for (SimulcastLayer l : simulcastLayers) {
          logInfo(l.getOrder() + ": " + l.getPrimarySSRC());
        }
      }
    }

    executorService.execute(
        new Runnable() {
          public void run() {
            firePropertyChange(SIMULCAST_LAYERS_PNAME, null, null);
          }
        });

    // TODO If simulcastLayers has changed, then simulcastLayerFrameHistory
    // has very likely become irrelevant. In other words, clear
    // simulcastLayerFrameHistory.
  }
/**
 * Intercepts and handles outgoing RTX (RFC-4588) packets for an <tt>RtpChannel</tt>. Depending on
 * whether the destination supports the RTX format (RFC-4588) either removes the RTX encapsulation
 * (thus effectively retransmitting packets bit-by-bit) or updates the sequence number and SSRC
 * fields taking into account the data sent to the particular <tt>RtpChannel</tt>.
 *
 * @author Boris Grozev
 */
public class RtxTransformer extends SinglePacketTransformerAdapter implements TransformEngine {
  /**
   * The <tt>Logger</tt> used by the <tt>RtxTransformer</tt> class and its instances to print debug
   * information.
   */
  private static final Logger logger = Logger.getLogger(RtxTransformer.class);

  /** The <tt>RtpChannel</tt> for the transformer. */
  private RtpChannel channel;

  /** Maps an RTX SSRC to the last RTP sequence number sent with that SSRC. */
  private final Map<Long, Integer> rtxSequenceNumbers = new HashMap<>();

  /**
   * Initializes a new <tt>RtxTransformer</tt> with a specific <tt>RtpChannel</tt>.
   *
   * @param channel the <tt>RtpChannel</tt> for the transformer.
   */
  RtxTransformer(RtpChannel channel) {
    this.channel = channel;
  }

  /** Implements {@link PacketTransformer#transform(RawPacket[])}. {@inheritDoc} */
  @Override
  public RawPacket transform(RawPacket pkt) {
    byte rtxPt;
    if (pkt != null
        && (rtxPt = channel.getRtxPayloadType()) != -1
        && pkt.getPayloadType() == rtxPt) {
      pkt = handleRtxPacket(pkt);
    }

    return pkt;
  }

  /**
   * Handles an RTX packet and returns it.
   *
   * @param pkt the packet to handle.
   * @return the packet
   */
  private RawPacket handleRtxPacket(RawPacket pkt) {
    boolean destinationSupportsRtx = channel.getRtxPayloadType() != -1;
    RawPacket mediaPacket = createMediaPacket(pkt);

    if (mediaPacket != null) {
      RawPacketCache cache = channel.getStream().getPacketCache();
      if (cache != null) {
        cache.cachePacket(mediaPacket);
      }
    }

    if (destinationSupportsRtx) {
      pkt.setSequenceNumber(
          getNextRtxSequenceNumber(pkt.getSSRC() & 0xffffffffL, pkt.getSequenceNumber()));
    } else {
      // If the media packet was not reconstructed, drop the RTX packet
      // (by returning null).
      return mediaPacket;
    }

    return pkt;
  }

  /**
   * Creates a {@code RawPacket} which represents the original packet encapsulated in {@code pkt}
   * using the RTX format.
   *
   * @param pkt the packet from which to extract a media packet.
   * @return the extracted media packet.
   */
  private RawPacket createMediaPacket(RawPacket pkt) {
    RawPacket mediaPacket = null;
    long rtxSsrc = pkt.getSSRC() & 0xffffffffL;

    // We need to know the SSRC paired with rtxSsrc *as seen by the
    // receiver (i.e. this.channel)*. However, we only store SSRCs
    // that endpoints *send* with.
    // We therefore assume that SSRC re-writing has not introduced any
    // new SSRCs and therefor the FID mappings known to the senders
    // also apply to receivers.
    RtpChannel sourceChannel = channel.getContent().findChannelByFidSsrc(rtxSsrc);
    if (sourceChannel != null) {
      long mediaSsrc = sourceChannel.getFidPairedSsrc(rtxSsrc);
      if (mediaSsrc != -1) {
        byte apt = sourceChannel.getRtxAssociatedPayloadType();
        if (apt != -1) {
          mediaPacket = new RawPacket(pkt.getBuffer().clone(), pkt.getOffset(), pkt.getLength());

          // Remove the RTX header by moving the RTP header two bytes
          // right.
          byte[] buf = mediaPacket.getBuffer();
          int off = mediaPacket.getOffset();
          System.arraycopy(buf, off, buf, off + 2, mediaPacket.getHeaderLength());

          mediaPacket.setOffset(off + 2);
          mediaPacket.setLength(pkt.getLength() - 2);

          mediaPacket.setSSRC((int) mediaSsrc);
          mediaPacket.setSequenceNumber(pkt.getOriginalSequenceNumber());
          mediaPacket.setPayloadType(apt);
        }
      }
    }

    return mediaPacket;
  }

  /** Implements {@link TransformEngine#getRTPTransformer()}. */
  @Override
  public PacketTransformer getRTPTransformer() {
    return this;
  }

  /** Implements {@link TransformEngine#getRTCPTransformer()}. */
  @Override
  public PacketTransformer getRTCPTransformer() {
    return null;
  }

  /**
   * Returns the sequence number to use for a specific RTX packet, which is based on the packet's
   * original sequence number.
   *
   * <p>Because we terminate the RTX format, and with simulcast we might translate RTX packets from
   * multiple SSRCs into the same SSRC, we keep count of the RTX packets (and their sequence
   * numbers) which we sent for each SSRC.
   *
   * @param ssrc the SSRC of the RTX stream for the packet.
   * @param defaultSeq the default sequence number to use in case we don't (yet) have any
   *     information about <tt>ssrc</tt>.
   * @return the sequence number which should be used for the next RTX packet sent using SSRC
   *     <tt>ssrc</tt>.
   */
  private int getNextRtxSequenceNumber(long ssrc, int defaultSeq) {
    Integer seq;
    synchronized (rtxSequenceNumbers) {
      seq = rtxSequenceNumbers.get(ssrc);
      if (seq == null) seq = defaultSeq;
      else seq++;

      rtxSequenceNumbers.put(ssrc, seq);
    }

    return seq;
  }

  /**
   * Returns the next RTP sequence number to use for the RTX stream for a particular SSRC.
   *
   * @param ssrc the SSRC.
   * @return the next sequence number to use for SSRC <tt>ssrc</tt>.
   */
  private int getNextRtxSequenceNumber(long ssrc) {
    return getNextRtxSequenceNumber(ssrc, new Random().nextInt(1 << 16));
  }

  /**
   * Tries to find an SSRC paired with {@code ssrc} in an FID group in one of the channels from
   * {@link #channel}'s {@code Content}. Returns -1 on failure.
   *
   * @param ssrc the SSRC for which to find a paired SSRC.
   * @return An SSRC paired with {@code ssrc} in an FID group, or -1.
   */
  private long getPairedSsrc(long ssrc) {
    RtpChannel sourceChannel = channel.getContent().findChannelByFidSsrc(ssrc);
    if (sourceChannel != null) {
      return sourceChannel.getFidPairedSsrc(ssrc);
    }
    return -1;
  }
  /**
   * Retransmits a packet to {@link #channel}. If the destination supports the RTX format, the
   * packet will be encapsulated in RTX, otherwise, the packet will be retransmitted as-is.
   *
   * @param pkt the packet to retransmit.
   * @param after the {@code TransformEngine} in the chain of {@code TransformEngine}s of the
   *     associated {@code MediaStream} after which the injection of {@code pkt} is to begin
   * @return {@code true} if the packet was successfully retransmitted, {@code false} otherwise.
   */
  public boolean retransmit(RawPacket pkt, TransformEngine after) {
    boolean destinationSupportsRtx = channel.getRtxPayloadType() != -1;
    boolean retransmitPlain;

    if (destinationSupportsRtx) {
      long rtxSsrc = getPairedSsrc(pkt.getSSRC());

      if (rtxSsrc == -1) {
        logger.warn("Cannot find SSRC for RTX, retransmitting plain.");
        retransmitPlain = true;
      } else {
        retransmitPlain = !encapsulateInRtxAndTransmit(pkt, rtxSsrc);
      }
    } else {
      retransmitPlain = true;
    }

    if (retransmitPlain) {
      MediaStream mediaStream = channel.getStream();

      if (mediaStream != null) {
        try {
          mediaStream.injectPacket(pkt, /* data */ true, after);
        } catch (TransmissionFailedException tfe) {
          logger.warn("Failed to retransmit a packet.");
          return false;
        }
      }
    }

    return true;
  }

  /**
   * Encapsulates {@code pkt} in the RTX format, using {@code rtxSsrc} as its SSRC, and transmits it
   * to {@link #channel} by injecting it in the {@code MediaStream}.
   *
   * @param pkt the packet to transmit.
   * @param rtxSsrc the SSRC for the RTX stream.
   * @return {@code true} if the packet was successfully retransmitted, {@code false} otherwise.
   */
  private boolean encapsulateInRtxAndTransmit(RawPacket pkt, long rtxSsrc) {
    byte[] buf = pkt.getBuffer();
    int len = pkt.getLength();
    int off = pkt.getOffset();
    byte[] newBuf = buf;
    if (buf.length < len + 2) {
      // FIXME The byte array newly allocated and assigned to newBuf must
      // be made known to pkt eventually.
      newBuf = new byte[len + 2];
    }

    int osn = pkt.getSequenceNumber();
    int headerLength = pkt.getHeaderLength();
    int payloadLength = len - headerLength;
    System.arraycopy(buf, off, newBuf, 0, headerLength);
    // FIXME If newBuf is actually buf, then we will override the first two
    // bytes of the payload bellow.
    newBuf[headerLength] = (byte) ((osn >> 8) & 0xff);
    newBuf[headerLength + 1] = (byte) (osn & 0xff);
    System.arraycopy(buf, off + headerLength, newBuf, headerLength + 2, payloadLength);
    // FIXME We tried to extend the payload of pkt by two bytes above but
    // we never told pkt that its length has increased by these two bytes.

    MediaStream mediaStream = channel.getStream();
    if (mediaStream != null) {
      pkt.setSSRC((int) rtxSsrc);
      // Only call getNextRtxSequenceNumber() when we're sure we're going
      // to transmit a packet, because it consumes a sequence number.
      pkt.setSequenceNumber(getNextRtxSequenceNumber(rtxSsrc));
      try {
        mediaStream.injectPacket(pkt, /* data */ true, /* after */ null);
      } catch (TransmissionFailedException tfe) {
        logger.warn("Failed to transmit an RTX packet.");
        return false;
      }
    }

    return true;
  }
}
 private void logInfo(String msg) {
   if (logger.isInfoEnabled()) {
     msg = getSimulcastEngine().getVideoChannel().getEndpoint().getID() + ": " + msg;
     logger.info(msg);
   }
 }
 private void logError(String msg, Throwable e) {
   msg = getSimulcastEngine().getVideoChannel().getEndpoint().getID() + ": " + msg;
   logger.error(msg, e);
 }
 private void logDebug(String msg) {
   if (logger.isDebugEnabled()) {
     msg = getSimulcastEngine().getVideoChannel().getEndpoint().getID() + ": " + msg;
     logger.debug(msg);
   }
 }
/**
 * The <tt>SimulcastReceiver</tt> of a <tt>SimulcastEngine</tt> receives the simulcast streams from
 * a simulcast enabled participant and manages 1 or more <tt>SimulcastLayer</tt>s. It fires a
 * property change event whenever the simulcast layers that it manages change.
 *
 * <p>This class is thread safe.
 *
 * @author George Politis
 * @author Lyubomir Marinov
 */
public class SimulcastReceiver extends PropertyChangeNotifier {
  /**
   * The <tt>Logger</tt> used by the <tt>ReceivingLayers</tt> class and its instances to print debug
   * information.
   */
  private static final Logger logger = Logger.getLogger(SimulcastReceiver.class);

  /**
   * The name of the property that gets fired when there's a change in the simulcast layers that
   * this receiver manages.
   */
  public static final String SIMULCAST_LAYERS_PNAME =
      SimulcastReceiver.class.getName() + ".simulcastLayers";

  /**
   * The number of (video) frames which defines the interval of time (indirectly) during which a
   * {@code SimulcastLayer} needs to receive data from its remote peer or it will be declared
   * paused/stopped/not streaming by its {@code SimulcastReceiver}.
   */
  static final int TIMEOUT_ON_FRAME_COUNT = 5;

  /** The pool of threads utilized by this class. */
  private static final ExecutorService executorService =
      ExecutorUtils.newCachedThreadPool(true, SimulcastReceiver.class.getName());

  /** Helper object that <tt>SwitchingSimulcastSender</tt> instances use to build JSON messages. */
  private static final SimulcastMessagesMapper mapper = new SimulcastMessagesMapper();

  /** The <tt>SimulcastEngine</tt> that owns this receiver. */
  private final SimulcastEngine simulcastEngine;

  /** The simulcast layers of this <tt>VideoChannel</tt>. */
  private SimulcastLayer[] simulcastLayers;

  /**
   * Indicates whether we're receiving native or non-native simulcast from the associated endpoint.
   * It determines whether the bridge should send messages over the data channels to manage the
   * non-native simulcast. In the case of native simulcast, there's nothing to do for the bridge.
   *
   * <p>NOTE that at the time of this writing we only support native simulcast. Last time we tried
   * non-native simulcast there was no way to limit the bitrate of lower layer streams and thus
   * there was no point in implementing non-native simulcast.
   *
   * <p>NOTE^2 This has changed recently with the webrtc stack automatically limiting the stream
   * bitrate based on its resolution (see commit 1c7d48d431e098ba42fa6bd9f1cfe69a703edee5 in the
   * webrtc git repository). So it might be something that we will want to implement in the future
   * for browsers that don't support native simulcast (Temasys).
   */
  private boolean nativeSimulcast = true;

  /**
   * The history of the order/sequence of receipt of (video) frames by {@link #simulcastLayers}.
   * Used in an attempt to speed up the detection of paused/stopped {@code SimulcastLayer}s by
   * counting (video) frames.
   */
  private final List<SimulcastLayer> simulcastLayerFrameHistory = new LinkedList<SimulcastLayer>();

  /**
   * Ctor.
   *
   * @param simulcastEngine the <tt>SimulcastEngine</tt> that owns this receiver.
   */
  public SimulcastReceiver(SimulcastEngine simulcastEngine) {
    this.simulcastEngine = simulcastEngine;
  }

  /**
   * Gets the <tt>SimulcastEngine</tt> that owns this receiver.
   *
   * @return the <tt>SimulcastEngine</tt> that owns this receiver.
   */
  public SimulcastEngine getSimulcastEngine() {
    return this.simulcastEngine;
  }

  /**
   * Returns true if the endpoint has signaled two or more simulcast layers.
   *
   * @return true if the endpoint has signaled two or more simulcast layers, false otherwise.
   */
  public boolean hasLayers() {
    SimulcastLayer[] sl = simulcastLayers;
    return sl != null && sl.length != 0;
  }

  /**
   * Returns a <tt>SimulcastLayer</tt> that is the closest match to the target order, or null if
   * simulcast hasn't been configured for this receiver.
   *
   * @param targetOrder the simulcast layer target order.
   * @return a <tt>SimulcastLayer</tt> that is the closest match to the target order, or null.
   */
  public SimulcastLayer getSimulcastLayer(int targetOrder) {
    SimulcastLayer[] layers = getSimulcastLayers();
    if (layers == null || layers.length == 0) {
      return null;
    }

    // Iterate through the simulcast layers that we own and return the one
    // that matches best the targetOrder parameter.
    SimulcastLayer next = layers[0];
    for (int i = 1; i < Math.min(targetOrder + 1, layers.length); i++) {
      if (!layers[i].isStreaming()) {
        break;
      }

      next = layers[i];
    }

    return next;
  }

  /**
   * Gets the simulcast layers of this simulcast manager in a new <tt>SortedSet</tt> so that the
   * caller won't have to worry about the structure changing by some other thread.
   *
   * @return the simulcast layers of this receiver in a new sorted set if simulcast is signaled, or
   *     null.
   */
  public SimulcastLayer[] getSimulcastLayers() {
    return simulcastLayers;
  }

  /**
   * Sets the simulcast layers for this receiver and fires an event about it.
   *
   * @param simulcastLayers the simulcast layers for this receiver.
   */
  public void setSimulcastLayers(SimulcastLayer[] simulcastLayers) {
    this.simulcastLayers = simulcastLayers;

    if (logger.isInfoEnabled()) {
      if (simulcastLayers == null) {
        logInfo("Simulcast disabled.");
      } else {
        for (SimulcastLayer l : simulcastLayers) {
          logInfo(l.getOrder() + ": " + l.getPrimarySSRC());
        }
      }
    }

    executorService.execute(
        new Runnable() {
          public void run() {
            firePropertyChange(SIMULCAST_LAYERS_PNAME, null, null);
          }
        });

    // TODO If simulcastLayers has changed, then simulcastLayerFrameHistory
    // has very likely become irrelevant. In other words, clear
    // simulcastLayerFrameHistory.
  }

  /**
   * Notifies this instance that a <tt>DatagramPacket</tt> packet received on the data
   * <tt>DatagramSocket</tt> of this <tt>Channel</tt> has been accepted for further processing
   * within Jitsi Videobridge.
   *
   * @param pkt the accepted <tt>RawPacket</tt>.
   */
  public void accepted(RawPacket pkt) {
    // With native simulcast we don't have a notification when a stream
    // has started/stopped. The simulcast manager implements a timeout
    // for the high quality stream and it needs to be notified when
    // the channel has accepted a datagram packet for the timeout to
    // function correctly.

    if (!hasLayers() || pkt == null) {
      return;
    }

    // Find the layer that corresponds to this packet.
    int acceptedSSRC = pkt.getSSRC();
    SimulcastLayer[] layers = getSimulcastLayers();
    SimulcastLayer acceptedLayer = null;
    for (SimulcastLayer layer : layers) {
      // We only care about the primary SSRC and not the RTX ssrc (or
      // future FEC ssrc).
      if ((int) layer.getPrimarySSRC() == acceptedSSRC) {
        acceptedLayer = layer;
        break;
      }
    }

    // If this is not an RTP packet or if we can't find an accepted
    // layer, log and return as it makes no sense to continue in this
    // situation.
    if (acceptedLayer == null) {
      return;
    }

    // There are sequences of packets with increasing timestamps but without
    // the marker bit set. Supposedly, they are probes to detect whether the
    // bandwidth may increase. We think that they should cause neither the
    // start nor the stop of any SimulcastLayer.

    // XXX There's RawPacket#getPayloadLength() but the implementation
    // includes pkt.paddingSize at the time of this writing and we do not
    // know whether that's going to stay that way.
    int pktPayloadLength = pkt.getLength() - pkt.getHeaderLength();
    int pktPaddingSize = pkt.getPaddingSize();

    if (pktPayloadLength <= pktPaddingSize) {
      if (logger.isTraceEnabled()) {
        logger.trace(
            "pkt.payloadLength= "
                + pktPayloadLength
                + " <= pkt.paddingSize= "
                + pktPaddingSize
                + "("
                + pkt.getSequenceNumber()
                + ")");
      }
      return;
    }

    // NOTE(gp) we expect the base layer to be always on, so we never touch
    // it or starve it.

    // XXX Refer to the implementation of
    // SimulcastLayer#touch(boolean, RawPacket) for an explanation of why we
    // chose to use a return value.
    boolean frameStarted = acceptedLayer.touch(pkt);
    if (frameStarted) simulcastLayerFrameStarted(acceptedLayer, pkt, layers);
  }

  /**
   * Maybe send a data channel command to the associated <tt>Endpoint</tt> to make it start
   * streaming its hq stream, if it's being watched by some receiver.
   */
  public void maybeSendStartHighQualityStreamCommand() {
    if (nativeSimulcast || !hasLayers()) {
      // In native simulcast the client adjusts its layers autonomously so
      // we don't need (nor we can) to control it with data channel
      // messages.
      return;
    }

    Endpoint newEndpoint = getSimulcastEngine().getVideoChannel().getEndpoint();
    SimulcastLayer[] newSimulcastLayers = getSimulcastLayers();

    SctpConnection sctpConnection;
    if (newSimulcastLayers == null
        || newSimulcastLayers.length <= 1
        /* newEndpoint != null is implied */
        || (sctpConnection = newEndpoint.getSctpConnection()) == null
        || !sctpConnection.isReady()
        || sctpConnection.isExpired()) {
      return;
    }

    // we have a new endpoint and it has an SCTP connection that is
    // ready and not expired. if somebody else is watching the new
    // endpoint, start its hq stream.

    boolean startHighQualityStream = false;

    for (Endpoint e :
        getSimulcastEngine().getVideoChannel().getContent().getConference().getEndpoints()) {
      // TODO(gp) need some synchronization here. What if the
      // selected endpoint changes while we're in the loop?

      if (e == newEndpoint) continue;

      Endpoint eSelectedEndpoint = e.getEffectivelySelectedEndpoint();

      if (newEndpoint == eSelectedEndpoint) {
        // somebody is watching the new endpoint or somebody has not
        // yet signaled its selected endpoint to the bridge, start
        // the hq stream.

        if (logger.isDebugEnabled()) {
          Map<String, Object> map = new HashMap<String, Object>(3);

          map.put("e", e);
          map.put("newEndpoint", newEndpoint);
          map.put("maybe", eSelectedEndpoint == null ? "(maybe) " : "");

          StringCompiler sc =
              new StringCompiler(map).c("{e.id} is {maybe} watching {newEndpoint.id}.");

          logDebug(sc.toString().replaceAll("\\s+", " "));
        }

        startHighQualityStream = true;
        break;
      }
    }

    if (startHighQualityStream) {
      // TODO(gp) this assumes only a single hq stream.

      logDebug(
          getSimulcastEngine().getVideoChannel().getEndpoint().getID()
              + " notifies "
              + newEndpoint.getID()
              + " to start its HQ stream.");

      SimulcastLayer hqLayer = newSimulcastLayers[newSimulcastLayers.length - 1];
      ;
      StartSimulcastLayerCommand command = new StartSimulcastLayerCommand(hqLayer);
      String json = mapper.toJson(command);

      try {
        newEndpoint.sendMessageOnDataChannel(json);
      } catch (IOException e) {
        logError(newEndpoint.getID() + " failed to send message on data channel.", e);
      }
    }
  }

  /**
   * Maybe send a data channel command to he associated simulcast sender to make it stop streaming
   * its hq stream, if it's not being watched by any participant.
   */
  public void maybeSendStopHighQualityStreamCommand() {
    if (nativeSimulcast || !hasLayers()) {
      // In native simulcast the client adjusts its layers autonomously so
      // we don't need (nor we can) to control it with data channel
      // messages.
      return;
    }

    Endpoint oldEndpoint = getSimulcastEngine().getVideoChannel().getEndpoint();

    SimulcastLayer[] oldSimulcastLayers = getSimulcastLayers();

    SctpConnection sctpConnection;
    if (oldSimulcastLayers != null
        && oldSimulcastLayers.length > 1
        /* oldEndpoint != null is implied*/
        && (sctpConnection = oldEndpoint.getSctpConnection()) != null
        && sctpConnection.isReady()
        && !sctpConnection.isExpired()) {
      // we have an old endpoint and it has an SCTP connection that is
      // ready and not expired. if nobody else is watching the old
      // endpoint, stop its hq stream.

      boolean stopHighQualityStream = true;
      for (Endpoint e :
          getSimulcastEngine().getVideoChannel().getContent().getConference().getEndpoints()) {
        // TODO(gp) need some synchronization here. What if the selected
        // endpoint changes while we're in the loop?

        if (oldEndpoint != e && (oldEndpoint == e.getEffectivelySelectedEndpoint())
            || e.getEffectivelySelectedEndpoint() == null) {
          // somebody is watching the old endpoint or somebody has not
          // yet signaled its selected endpoint to the bridge, don't
          // stop the hq stream.
          stopHighQualityStream = false;
          break;
        }
      }

      if (stopHighQualityStream) {
        // TODO(gp) this assumes only a single hq stream.

        logDebug(
            getSimulcastEngine().getVideoChannel().getEndpoint().getID()
                + " notifies "
                + oldEndpoint.getID()
                + " to stop "
                + "its HQ stream.");

        SimulcastLayer hqLayer = oldSimulcastLayers[oldSimulcastLayers.length - 1];

        StopSimulcastLayerCommand command = new StopSimulcastLayerCommand(hqLayer);

        String json = mapper.toJson(command);

        try {
          oldEndpoint.sendMessageOnDataChannel(json);
        } catch (IOException e1) {
          logError(oldEndpoint.getID() + " failed to send " + "message on data channel.", e1);
        }
      }
    }
  }

  private void logDebug(String msg) {
    if (logger.isDebugEnabled()) {
      msg = getSimulcastEngine().getVideoChannel().getEndpoint().getID() + ": " + msg;
      logger.debug(msg);
    }
  }

  private void logWarn(String msg) {
    if (logger.isWarnEnabled()) {
      msg = getSimulcastEngine().getVideoChannel().getEndpoint().getID() + ": " + msg;
      logger.warn(msg);
    }
  }

  private void logError(String msg, Throwable e) {
    msg = getSimulcastEngine().getVideoChannel().getEndpoint().getID() + ": " + msg;
    logger.error(msg, e);
  }

  private void logInfo(String msg) {
    if (logger.isInfoEnabled()) {
      msg = getSimulcastEngine().getVideoChannel().getEndpoint().getID() + ": " + msg;
      logger.info(msg);
    }
  }

  /**
   * Notifies this {@code SimulcastReceiver} that a specific {@code SimulcastReceiver} has detected
   * the start of a new video frame in the RTP stream that it represents. Determines whether any of
   * {@link #simulcastLayers} other than {@code source} have been paused/stopped by the remote peer.
   * The determination is based on counting (video) frames.
   *
   * @param source the {@code SimulcastLayer} which is the source of the event i.e. which has
   *     detected the start of a new video frame in the RTP stream that it represents
   * @param pkt the {@code RawPacket} which was received by {@code source} and possibly influenced
   *     the decision that a new view frame was started in the RTP stream represented by {@code
   *     source}
   * @param layers the set of {@code SimulcastLayer}s managed by this {@code SimulcastReceiver}.
   *     Explicitly provided to the method in order to avoid invocations of {@link
   *     #getSimulcastLayers()} because the latter makes a copy at the time of this writing.
   */
  private void simulcastLayerFrameStarted(
      SimulcastLayer source, RawPacket pkt, SimulcastLayer[] layers) {
    // Allow the value of the constant TIMEOUT_ON_FRAME_COUNT to disable (at
    // compile time) the frame-based approach to the detection of layer
    // drops.
    if (TIMEOUT_ON_FRAME_COUNT <= 1) return;

    // Timeouts in layers caused by source may occur only based on the span
    // (of time or received frames) during which source has received
    // TIMEOUT_ON_FRAME_COUNT number of frames. The current method
    // invocation signals the receipt of 1 frame by source.
    int indexOfLastSourceOccurrenceInHistory = -1;
    int sourceFrameCount = 0;
    int ix = 0;

    for (Iterator<SimulcastLayer> it = simulcastLayerFrameHistory.iterator(); it.hasNext(); ++ix) {
      if (it.next() == source) {
        if (indexOfLastSourceOccurrenceInHistory != -1) {
          // Prune simulcastLayerFrameHistory so that it does not
          // become unnecessarily long.
          it.remove();
        } else if (++sourceFrameCount >= TIMEOUT_ON_FRAME_COUNT - 1) {
          // The span of TIMEOUT_ON_FRAME_COUNT number of frames
          // received by source only is to be examined for the
          // purposes of timeouts. The current method invocations
          // signals the receipt of 1 frame by source so
          // TIMEOUT_ON_FRAME_COUNT - 1 occurrences of source in
          // simulcastLayerFrameHistory is enough.
          indexOfLastSourceOccurrenceInHistory = ix;
        }
      }
    }

    if (indexOfLastSourceOccurrenceInHistory != -1) {
      // Presumably, if a SimulcastLayer is active, all SimulcastLayers
      // before it (according to SimulcastLayer's order) are active as
      // well. Consequently, timeouts may occur in SimulcastLayers which
      // are after source.
      boolean maybeTimeout = false;

      for (SimulcastLayer layer : layers) {
        if (maybeTimeout) {
          // There's no point in timing layer out if it's timed out
          // already.
          if (layer.isStreaming()) {
            maybeTimeout(source, pkt, layer, indexOfLastSourceOccurrenceInHistory);
          }
        } else if (layer == source) {
          maybeTimeout = true;
        }
      }
    }

    // As previously stated, the current method invocation signals the
    // receipt of 1 frame by source.
    simulcastLayerFrameHistory.add(0, source);
    // TODO Prune simulcastLayerFrameHistory by forgetting so that it does
    // not become too long.
  }

  /**
   * Determines whether {@code effect} has been paused/stopped by the remote peer. The determination
   * is based on counting frames and is triggered by the receipt of (a piece of) a new (video) frame
   * by {@code cause}.
   *
   * @param cause the {@code SimulcastLayer} which has received (a piece of) a new (video) frame and
   *     has thus triggered a check on {@code effect}
   * @param pkt the {@code RawPacket} which was received by {@code cause} and possibly influenced
   *     the decision to trigger a check on {@code effect}
   * @param effect the {@code SimulcastLayer} which is to be checked whether it looks like it has
   *     been paused/stopped by the remote peer
   * @param endIndexInSimulcastLayerFrameHistory
   */
  private void maybeTimeout(
      SimulcastLayer cause,
      RawPacket pkt,
      SimulcastLayer effect,
      int endIndexInSimulcastLayerFrameHistory) {
    Iterator<SimulcastLayer> it = simulcastLayerFrameHistory.iterator();
    boolean timeout = true;

    for (int ix = 0; it.hasNext() && ix < endIndexInSimulcastLayerFrameHistory; ++ix) {
      if (it.next() == effect) {
        timeout = false;
        break;
      }
    }
    if (timeout) {
      effect.maybeTimeout(pkt);

      if (!effect.isStreaming()) {
        // Since effect has been determined to have been paused/stopped
        // by the remote peer, its possible presence in
        // simulcastLayerFrameHistory is irrelevant now. In other words,
        // remove effect from simulcastLayerFrameHistory.
        while (it.hasNext()) {
          if (it.next() == effect) it.remove();
        }
      }
    }
  }
}
  /**
   * Maybe send a data channel command to the associated <tt>Endpoint</tt> to make it start
   * streaming its hq stream, if it's being watched by some receiver.
   */
  public void maybeSendStartHighQualityStreamCommand() {
    if (nativeSimulcast || !hasLayers()) {
      // In native simulcast the client adjusts its layers autonomously so
      // we don't need (nor we can) to control it with data channel
      // messages.
      return;
    }

    Endpoint newEndpoint = getSimulcastEngine().getVideoChannel().getEndpoint();
    SimulcastLayer[] newSimulcastLayers = getSimulcastLayers();

    SctpConnection sctpConnection;
    if (newSimulcastLayers == null
        || newSimulcastLayers.length <= 1
        /* newEndpoint != null is implied */
        || (sctpConnection = newEndpoint.getSctpConnection()) == null
        || !sctpConnection.isReady()
        || sctpConnection.isExpired()) {
      return;
    }

    // we have a new endpoint and it has an SCTP connection that is
    // ready and not expired. if somebody else is watching the new
    // endpoint, start its hq stream.

    boolean startHighQualityStream = false;

    for (Endpoint e :
        getSimulcastEngine().getVideoChannel().getContent().getConference().getEndpoints()) {
      // TODO(gp) need some synchronization here. What if the
      // selected endpoint changes while we're in the loop?

      if (e == newEndpoint) continue;

      Endpoint eSelectedEndpoint = e.getEffectivelySelectedEndpoint();

      if (newEndpoint == eSelectedEndpoint) {
        // somebody is watching the new endpoint or somebody has not
        // yet signaled its selected endpoint to the bridge, start
        // the hq stream.

        if (logger.isDebugEnabled()) {
          Map<String, Object> map = new HashMap<String, Object>(3);

          map.put("e", e);
          map.put("newEndpoint", newEndpoint);
          map.put("maybe", eSelectedEndpoint == null ? "(maybe) " : "");

          StringCompiler sc =
              new StringCompiler(map).c("{e.id} is {maybe} watching {newEndpoint.id}.");

          logDebug(sc.toString().replaceAll("\\s+", " "));
        }

        startHighQualityStream = true;
        break;
      }
    }

    if (startHighQualityStream) {
      // TODO(gp) this assumes only a single hq stream.

      logDebug(
          getSimulcastEngine().getVideoChannel().getEndpoint().getID()
              + " notifies "
              + newEndpoint.getID()
              + " to start its HQ stream.");

      SimulcastLayer hqLayer = newSimulcastLayers[newSimulcastLayers.length - 1];
      ;
      StartSimulcastLayerCommand command = new StartSimulcastLayerCommand(hqLayer);
      String json = mapper.toJson(command);

      try {
        newEndpoint.sendMessageOnDataChannel(json);
      } catch (IOException e) {
        logError(newEndpoint.getID() + " failed to send message on data channel.", e);
      }
    }
  }
  /**
   * Notifies this instance that a <tt>DatagramPacket</tt> packet received on the data
   * <tt>DatagramSocket</tt> of this <tt>Channel</tt> has been accepted for further processing
   * within Jitsi Videobridge.
   *
   * @param pkt the accepted <tt>RawPacket</tt>.
   */
  public void accepted(RawPacket pkt) {
    // With native simulcast we don't have a notification when a stream
    // has started/stopped. The simulcast manager implements a timeout
    // for the high quality stream and it needs to be notified when
    // the channel has accepted a datagram packet for the timeout to
    // function correctly.

    if (!hasLayers() || pkt == null) {
      return;
    }

    // Find the layer that corresponds to this packet.
    int acceptedSSRC = pkt.getSSRC();
    SimulcastLayer[] layers = getSimulcastLayers();
    SimulcastLayer acceptedLayer = null;
    for (SimulcastLayer layer : layers) {
      // We only care about the primary SSRC and not the RTX ssrc (or
      // future FEC ssrc).
      if ((int) layer.getPrimarySSRC() == acceptedSSRC) {
        acceptedLayer = layer;
        break;
      }
    }

    // If this is not an RTP packet or if we can't find an accepted
    // layer, log and return as it makes no sense to continue in this
    // situation.
    if (acceptedLayer == null) {
      return;
    }

    // There are sequences of packets with increasing timestamps but without
    // the marker bit set. Supposedly, they are probes to detect whether the
    // bandwidth may increase. We think that they should cause neither the
    // start nor the stop of any SimulcastLayer.

    // XXX There's RawPacket#getPayloadLength() but the implementation
    // includes pkt.paddingSize at the time of this writing and we do not
    // know whether that's going to stay that way.
    int pktPayloadLength = pkt.getLength() - pkt.getHeaderLength();
    int pktPaddingSize = pkt.getPaddingSize();

    if (pktPayloadLength <= pktPaddingSize) {
      if (logger.isTraceEnabled()) {
        logger.trace(
            "pkt.payloadLength= "
                + pktPayloadLength
                + " <= pkt.paddingSize= "
                + pktPaddingSize
                + "("
                + pkt.getSequenceNumber()
                + ")");
      }
      return;
    }

    // NOTE(gp) we expect the base layer to be always on, so we never touch
    // it or starve it.

    // XXX Refer to the implementation of
    // SimulcastLayer#touch(boolean, RawPacket) for an explanation of why we
    // chose to use a return value.
    boolean frameStarted = acceptedLayer.touch(pkt);
    if (frameStarted) simulcastLayerFrameStarted(acceptedLayer, pkt, layers);
  }
Esempio n. 15
0
  /**
   * Initializes a new <tt>RtxTransformer</tt> with a specific <tt>RtpChannel</tt>.
   *
   * @param channel the <tt>RtpChannel</tt> for the transformer.
   */
  RtxTransformer(RtpChannel channel) {
    super(RTPPacketPredicate.INSTANCE);

    this.channel = channel;
    this.logger = Logger.getLogger(classLogger, channel.getContent().getConference().getLogger());
  }
Esempio n. 16
0
/**
 * Intercepts RTX (RFC-4588) packets coming from an {@link RtpChannel}, and removes their RTX
 * encapsulation. Allows packets to be retransmitted to a channel (using the RTX format if the
 * destination supports it).
 *
 * @author Boris Grozev
 * @author George Politis
 */
public class RtxTransformer extends SinglePacketTransformerAdapter implements TransformEngine {
  /**
   * The {@link Logger} used by the {@link RtxTransformer} class to print debug information. Note
   * that {@link Conference} instances should use {@link #logger} instead.
   */
  private static final Logger classLogger = Logger.getLogger(RtxTransformer.class);

  /** The <tt>RtpChannel</tt> for the transformer. */
  private RtpChannel channel;

  /** Maps an RTX SSRC to the last RTP sequence number sent with that SSRC. */
  private final Map<Long, Integer> rtxSequenceNumbers = new HashMap<>();

  /** The {@link Logger} to be used by this instance to print debug information. */
  private final Logger logger;

  /**
   * The payload type number configured for RTX (RFC-4588), or -1 if none is configured (the other
   * end does not support rtx).
   */
  private byte rtxPayloadType = -1;

  /** The "associated payload type" number for RTX. */
  private byte rtxAssociatedPayloadType = -1;

  /**
   * Initializes a new <tt>RtxTransformer</tt> with a specific <tt>RtpChannel</tt>.
   *
   * @param channel the <tt>RtpChannel</tt> for the transformer.
   */
  RtxTransformer(RtpChannel channel) {
    super(RTPPacketPredicate.INSTANCE);

    this.channel = channel;
    this.logger = Logger.getLogger(classLogger, channel.getContent().getConference().getLogger());
  }

  /** Implements {@link PacketTransformer#transform(RawPacket[])}. {@inheritDoc} */
  @Override
  public RawPacket reverseTransform(RawPacket pkt) {
    if (isRtx(pkt)) {
      pkt = deRtx(pkt);
    }

    return pkt;
  }

  /**
   * Determines whether {@code pkt} is an RTX packet.
   *
   * @param pkt the packet to check.
   * @return {@code true} iff {@code pkt} is an RTX packet.
   */
  private boolean isRtx(RawPacket pkt) {
    byte rtxPt = rtxPayloadType;
    return rtxPt != -1 && rtxPt == pkt.getPayloadType();
  }

  /**
   * Removes the RTX encapsulation from a packet.
   *
   * @param pkt the packet to remove the RTX encapsulation from.
   * @return the original media packet represented by {@code pkt}, or null if we couldn't
   *     reconstruct the original packet.
   */
  private RawPacket deRtx(RawPacket pkt) {
    boolean success = false;

    if (pkt.getPayloadLength() - pkt.getPaddingSize() < 2) {
      // We need at least 2 bytes to read the OSN field.
      if (logger.isDebugEnabled()) {
        logger.debug("Dropping an incoming RTX packet with padding only: " + pkt);
      }
      return null;
    }

    long mediaSsrc = getPrimarySsrc(pkt);
    if (mediaSsrc != -1) {
      if (rtxAssociatedPayloadType != -1) {
        int osn = pkt.getOriginalSequenceNumber();
        // Remove the RTX header by moving the RTP header two bytes
        // right.
        byte[] buf = pkt.getBuffer();
        int off = pkt.getOffset();
        System.arraycopy(buf, off, buf, off + 2, pkt.getHeaderLength());

        pkt.setOffset(off + 2);
        pkt.setLength(pkt.getLength() - 2);

        pkt.setSSRC((int) mediaSsrc);
        pkt.setSequenceNumber(osn);
        pkt.setPayloadType(rtxAssociatedPayloadType);
        success = true;
      } else {
        logger.warn(
            "RTX packet received, but no APT is defined. Packet "
                + "SSRC "
                + pkt.getSSRCAsLong()
                + ", associated media"
                + " SSRC "
                + mediaSsrc);
      }
    }

    // If we failed to handle the RTX packet, drop it.
    return success ? pkt : null;
  }

  /** Implements {@link TransformEngine#getRTPTransformer()}. */
  @Override
  public PacketTransformer getRTPTransformer() {
    return this;
  }

  /** Implements {@link TransformEngine#getRTCPTransformer()}. */
  @Override
  public PacketTransformer getRTCPTransformer() {
    return null;
  }

  /**
   * Returns the sequence number to use for a specific RTX packet, which is based on the packet's
   * original sequence number.
   *
   * <p>Because we terminate the RTX format, and with simulcast we might translate RTX packets from
   * multiple SSRCs into the same SSRC, we keep count of the RTX packets (and their sequence
   * numbers) which we sent for each SSRC.
   *
   * @param ssrc the SSRC of the RTX stream for the packet.
   * @return the sequence number which should be used for the next RTX packet sent using SSRC
   *     <tt>ssrc</tt>.
   */
  private int getNextRtxSequenceNumber(long ssrc) {
    Integer seq;
    synchronized (rtxSequenceNumbers) {
      seq = rtxSequenceNumbers.get(ssrc);
      if (seq == null) seq = new Random().nextInt(0xffff);
      else seq++;

      rtxSequenceNumbers.put(ssrc, seq);
    }

    return seq;
  }

  /**
   * Tries to find an SSRC paired with {@code ssrc} in an FID group in one of the channels from
   * {@link #channel}'s {@code Content}. Returns -1 on failure.
   *
   * @param pkt the {@code RawPacket} that holds the RTP packet for which to find a paired SSRC.
   * @return An SSRC paired with {@code ssrc} in an FID group, or -1.
   */
  private long getRtxSsrc(RawPacket pkt) {
    StreamRTPManager receiveRTPManager =
        channel.getStream().getRTPTranslator().findStreamRTPManagerByReceiveSSRC(pkt.getSSRC());

    MediaStreamTrackReceiver receiver = null;
    if (receiveRTPManager != null) {
      MediaStream receiveStream = receiveRTPManager.getMediaStream();
      if (receiveStream != null) {
        receiver = receiveStream.getMediaStreamTrackReceiver();
      }
    }

    if (receiver == null) {
      return -1;
    }

    RTPEncoding encoding = receiver.resolveRTPEncoding(pkt);
    if (encoding == null) {
      logger.warn(
          "encoding_not_found"
              + ",stream_hash="
              + channel.getStream().hashCode()
              + " ssrc="
              + pkt.getSSRCAsLong());
      return -1;
    }

    return encoding.getRTXSSRC();
  }
  /**
   * Retransmits a packet to {@link #channel}. If the destination supports the RTX format, the
   * packet will be encapsulated in RTX, otherwise, the packet will be retransmitted as-is.
   *
   * @param pkt the packet to retransmit.
   * @param after the {@code TransformEngine} in the chain of {@code TransformEngine}s of the
   *     associated {@code MediaStream} after which the injection of {@code pkt} is to begin
   * @return {@code true} if the packet was successfully retransmitted, {@code false} otherwise.
   */
  public boolean retransmit(RawPacket pkt, TransformEngine after) {
    boolean destinationSupportsRtx = rtxPayloadType != -1;
    boolean retransmitPlain;

    if (destinationSupportsRtx) {
      long rtxSsrc = getRtxSsrc(pkt);

      if (rtxSsrc == -1) {
        logger.warn(
            "Cannot find SSRC for RTX, retransmitting plain. " + "SSRC=" + pkt.getSSRCAsLong());
        retransmitPlain = true;
      } else {
        retransmitPlain = !encapsulateInRtxAndTransmit(pkt, rtxSsrc, after);
      }
    } else {
      retransmitPlain = true;
    }

    if (retransmitPlain) {
      MediaStream mediaStream = channel.getStream();

      if (mediaStream != null) {
        try {
          mediaStream.injectPacket(pkt, /* data */ true, after);
        } catch (TransmissionFailedException tfe) {
          logger.warn("Failed to retransmit a packet.");
          return false;
        }
      }
    }

    return true;
  }

  /**
   * Notifies this instance that the dynamic payload types of the associated {@link MediaStream}
   * have changed.
   */
  public void onDynamicPayloadTypesChanged() {
    rtxPayloadType = -1;
    rtxAssociatedPayloadType = -1;

    MediaStream mediaStream = channel.getStream();

    Map<Byte, MediaFormat> mediaFormatMap = mediaStream.getDynamicRTPPayloadTypes();

    Iterator<Map.Entry<Byte, MediaFormat>> it = mediaFormatMap.entrySet().iterator();

    while (it.hasNext() && rtxPayloadType == -1) {
      Map.Entry<Byte, MediaFormat> entry = it.next();
      MediaFormat format = entry.getValue();
      if (!Constants.RTX.equalsIgnoreCase(format.getEncoding())) {
        continue;
      }

      // XXX(gp) we freak out if multiple codecs with RTX support are
      // present.
      rtxPayloadType = entry.getKey();
      rtxAssociatedPayloadType = Byte.parseByte(format.getFormatParameters().get("apt"));
    }
  }

  /**
   * Encapsulates {@code pkt} in the RTX format, using {@code rtxSsrc} as its SSRC, and transmits it
   * to {@link #channel} by injecting it in the {@code MediaStream}.
   *
   * @param pkt the packet to transmit.
   * @param rtxSsrc the SSRC for the RTX stream.
   * @param after the {@code TransformEngine} in the chain of {@code TransformEngine}s of the
   *     associated {@code MediaStream} after which the injection of {@code pkt} is to begin
   * @return {@code true} if the packet was successfully retransmitted, {@code false} otherwise.
   */
  private boolean encapsulateInRtxAndTransmit(RawPacket pkt, long rtxSsrc, TransformEngine after) {
    byte[] buf = pkt.getBuffer();
    int len = pkt.getLength();
    int off = pkt.getOffset();

    byte[] newBuf = new byte[len + 2];
    RawPacket rtxPkt = new RawPacket(newBuf, 0, len + 2);

    int osn = pkt.getSequenceNumber();
    int headerLength = pkt.getHeaderLength();
    int payloadLength = pkt.getPayloadLength();

    // Copy the header.
    System.arraycopy(buf, off, newBuf, 0, headerLength);

    // Set the OSN field.
    newBuf[headerLength] = (byte) ((osn >> 8) & 0xff);
    newBuf[headerLength + 1] = (byte) (osn & 0xff);

    // Copy the payload.
    System.arraycopy(buf, off + headerLength, newBuf, headerLength + 2, payloadLength);

    MediaStream mediaStream = channel.getStream();
    if (mediaStream != null) {
      rtxPkt.setSSRC((int) rtxSsrc);
      rtxPkt.setPayloadType(rtxPayloadType);
      // Only call getNextRtxSequenceNumber() when we're sure we're going
      // to transmit a packet, because it consumes a sequence number.
      rtxPkt.setSequenceNumber(getNextRtxSequenceNumber(rtxSsrc));
      try {
        mediaStream.injectPacket(rtxPkt, /* data */ true, after);
      } catch (TransmissionFailedException tfe) {
        logger.warn("Failed to transmit an RTX packet.");
        return false;
      }
    }

    return true;
  }

  /**
   * Returns the SSRC paired with <tt>ssrc</tt> in an FID source-group, if any. If none is found,
   * returns -1.
   *
   * @return the SSRC paired with <tt>ssrc</tt> in an FID source-group, if any. If none is found,
   *     returns -1.
   */
  private long getPrimarySsrc(RawPacket pkt) {
    MediaStreamTrackReceiver receiver = channel.getStream().getMediaStreamTrackReceiver();

    if (receiver == null) {
      if (logger.isDebugEnabled()) {
        logger.debug("Dropping an incoming RTX packet from an unknown source.");
      }
      return -1;
    }

    RTPEncoding encoding = receiver.resolveRTPEncoding(pkt);
    if (encoding == null) {
      if (logger.isDebugEnabled()) {
        logger.debug("Dropping an incoming RTX packet from an unknown source.");
      }
      return -1;
    }

    return encoding.getPrimarySSRC();
  }
}