public void pushContact(Contact contact) { if (contact.m_manifold.pointCount > 0) { contact.getFixtureA().getBody().setAwake(true); contact.getFixtureB().getBody().setAwake(true); } ShapeType type1 = contact.getFixtureA().getType(); ShapeType type2 = contact.getFixtureB().getType(); IDynamicStack<Contact> creator = contactStacks[type1.ordinal()][type2.ordinal()].creator; creator.push(contact); }
private void addType(IDynamicStack<Contact> creator, ShapeType type1, ShapeType type2) { ContactRegister register = new ContactRegister(); register.creator = creator; register.primary = true; contactStacks[type1.ordinal()][type2.ordinal()] = register; if (type1 != type2) { ContactRegister register2 = new ContactRegister(); register2.creator = creator; register2.primary = false; contactStacks[type2.ordinal()][type1.ordinal()] = register2; } }
public Contact popContact(Fixture fixtureA, int indexA, Fixture fixtureB, int indexB) { final ShapeType type1 = fixtureA.getType(); final ShapeType type2 = fixtureB.getType(); final ContactRegister reg = contactStacks[type1.ordinal()][type2.ordinal()]; final IDynamicStack<Contact> creator = reg.creator; if (creator != null) { if (reg.primary) { Contact c = creator.pop(); c.init(fixtureA, indexA, fixtureB, indexB); return c; } else { Contact c = creator.pop(); c.init(fixtureB, indexB, fixtureA, indexA); return c; } } else { return null; } }
/** * The world class manages all physics entities, dynamic simulation, and asynchronous queries. The * world also contains efficient memory management facilities. * * @author Daniel Murphy */ public class World { public static final int WORLD_POOL_SIZE = 100; public static final int WORLD_POOL_CONTAINER_SIZE = 10; public static final int NEW_FIXTURE = 0x0001; public static final int LOCKED = 0x0002; public static final int CLEAR_FORCES = 0x0004; // statistics gathering public int activeContacts = 0; public int contactPoolCount = 0; protected int m_flags; protected ContactManager m_contactManager; private Body m_bodyList; private Joint m_jointList; private int m_bodyCount; private int m_jointCount; private final Vec2 m_gravity = new Vec2(); private boolean m_allowSleep; // private Body m_groundBody; private DestructionListener m_destructionListener; private DebugDraw m_debugDraw; private final IWorldPool pool; /** This is used to compute the time step ratio to support a variable time step. */ private float m_inv_dt0; // these are for debugging the solver private boolean m_warmStarting; private boolean m_continuousPhysics; private boolean m_subStepping; private boolean m_stepComplete; private Profile m_profile; private ContactRegister[][] contactStacks = new ContactRegister[ShapeType.values().length][ShapeType.values().length]; public World(Vec2 gravity) { this(gravity, new DefaultWorldPool(WORLD_POOL_SIZE, WORLD_POOL_CONTAINER_SIZE)); } /** * Construct a world object. * * @param gravity the world gravity vector. * @param doSleep improve performance by not simulating inactive bodies. */ public World(Vec2 gravity, IWorldPool argPool) { pool = argPool; m_destructionListener = null; m_debugDraw = null; m_bodyList = null; m_jointList = null; m_bodyCount = 0; m_jointCount = 0; m_warmStarting = true; m_continuousPhysics = true; m_subStepping = false; m_stepComplete = true; m_allowSleep = true; m_gravity.set(gravity); m_flags = CLEAR_FORCES; m_inv_dt0 = 0f; m_contactManager = new ContactManager(this); m_profile = new Profile(); initializeRegisters(); } public void setAllowSleep(boolean flag) { if (flag == m_allowSleep) { return; } m_allowSleep = flag; if (m_allowSleep == false) { for (Body b = m_bodyList; b != null; b = b.m_next) { b.setAwake(true); } } } public boolean isAllowSleep() { return m_allowSleep; } private void addType(IDynamicStack<Contact> creator, ShapeType type1, ShapeType type2) { ContactRegister register = new ContactRegister(); register.creator = creator; register.primary = true; contactStacks[type1.ordinal()][type2.ordinal()] = register; if (type1 != type2) { ContactRegister register2 = new ContactRegister(); register2.creator = creator; register2.primary = false; contactStacks[type2.ordinal()][type1.ordinal()] = register2; } } private void initializeRegisters() { addType(pool.getCircleContactStack(), ShapeType.CIRCLE, ShapeType.CIRCLE); addType(pool.getPolyCircleContactStack(), ShapeType.POLYGON, ShapeType.CIRCLE); addType(pool.getPolyContactStack(), ShapeType.POLYGON, ShapeType.POLYGON); addType(pool.getEdgeCircleContactStack(), ShapeType.EDGE, ShapeType.CIRCLE); addType(pool.getEdgePolyContactStack(), ShapeType.EDGE, ShapeType.POLYGON); addType(pool.getChainCircleContactStack(), ShapeType.CHAIN, ShapeType.CIRCLE); addType(pool.getChainPolyContactStack(), ShapeType.CHAIN, ShapeType.POLYGON); } public Contact popContact(Fixture fixtureA, int indexA, Fixture fixtureB, int indexB) { final ShapeType type1 = fixtureA.getType(); final ShapeType type2 = fixtureB.getType(); final ContactRegister reg = contactStacks[type1.ordinal()][type2.ordinal()]; final IDynamicStack<Contact> creator = reg.creator; if (creator != null) { if (reg.primary) { Contact c = creator.pop(); c.init(fixtureA, indexA, fixtureB, indexB); return c; } else { Contact c = creator.pop(); c.init(fixtureB, indexB, fixtureA, indexA); return c; } } else { return null; } } public void pushContact(Contact contact) { if (contact.m_manifold.pointCount > 0) { contact.getFixtureA().getBody().setAwake(true); contact.getFixtureB().getBody().setAwake(true); } ShapeType type1 = contact.getFixtureA().getType(); ShapeType type2 = contact.getFixtureB().getType(); IDynamicStack<Contact> creator = contactStacks[type1.ordinal()][type2.ordinal()].creator; creator.push(contact); } public IWorldPool getPool() { return pool; } /** * Register a destruction listener. The listener is owned by you and must remain in scope. * * @param listener */ public void setDestructionListener(DestructionListener listener) { m_destructionListener = listener; } /** * Register a contact filter to provide specific control over collision. Otherwise the default * filter is used (_defaultFilter). The listener is owned by you and must remain in scope. * * @param filter */ public void setContactFilter(ContactFilter filter) { m_contactManager.m_contactFilter = filter; } /** * Register a contact event listener. The listener is owned by you and must remain in scope. * * @param listener */ public void setContactListener(ContactListener listener) { m_contactManager.m_contactListener = listener; } /** * Register a routine for debug drawing. The debug draw functions are called inside with * World.DrawDebugData method. The debug draw object is owned by you and must remain in scope. * * @param debugDraw */ public void setDebugDraw(DebugDraw debugDraw) { m_debugDraw = debugDraw; } /** * create a rigid body given a definition. No reference to the definition is retained. * * @warning This function is locked during callbacks. * @param def * @return */ public Body createBody(BodyDef def) { assert (isLocked() == false); if (isLocked()) { return null; } // TODO djm pooling Body b = new Body(def, this); // add to world doubly linked list b.m_prev = null; b.m_next = m_bodyList; if (m_bodyList != null) { m_bodyList.m_prev = b; } m_bodyList = b; ++m_bodyCount; return b; } /** * destroy a rigid body given a definition. No reference to the definition is retained. This * function is locked during callbacks. * * @warning This automatically deletes all associated shapes and joints. * @warning This function is locked during callbacks. * @param body */ public void destroyBody(Body body) { assert (m_bodyCount > 0); assert (isLocked() == false); if (isLocked()) { return; } // Delete the attached joints. JointEdge je = body.m_jointList; while (je != null) { JointEdge je0 = je; je = je.next; if (m_destructionListener != null) { m_destructionListener.sayGoodbye(je0.joint); } destroyJoint(je0.joint); body.m_jointList = je; } body.m_jointList = null; // Delete the attached contacts. ContactEdge ce = body.m_contactList; while (ce != null) { ContactEdge ce0 = ce; ce = ce.next; m_contactManager.destroy(ce0.contact); } body.m_contactList = null; Fixture f = body.m_fixtureList; while (f != null) { Fixture f0 = f; f = f.m_next; if (m_destructionListener != null) { m_destructionListener.sayGoodbye(f0); } f0.destroyProxies(m_contactManager.m_broadPhase); f0.destroy(); // TODO djm recycle fixtures (here or in that destroy method) body.m_fixtureList = f; body.m_fixtureCount -= 1; } body.m_fixtureList = null; body.m_fixtureCount = 0; // Remove world body list. if (body.m_prev != null) { body.m_prev.m_next = body.m_next; } if (body.m_next != null) { body.m_next.m_prev = body.m_prev; } if (body == m_bodyList) { m_bodyList = body.m_next; } --m_bodyCount; // TODO djm recycle body } /** * create a joint to constrain bodies together. No reference to the definition is retained. This * may cause the connected bodies to cease colliding. * * @warning This function is locked during callbacks. * @param def * @return */ public Joint createJoint(JointDef def) { assert (isLocked() == false); if (isLocked()) { return null; } Joint j = Joint.create(this, def); // Connect to the world list. j.m_prev = null; j.m_next = m_jointList; if (m_jointList != null) { m_jointList.m_prev = j; } m_jointList = j; ++m_jointCount; // Connect to the bodies' doubly linked lists. j.m_edgeA.joint = j; j.m_edgeA.other = j.m_bodyB; j.m_edgeA.prev = null; j.m_edgeA.next = j.m_bodyA.m_jointList; if (j.m_bodyA.m_jointList != null) { j.m_bodyA.m_jointList.prev = j.m_edgeA; } j.m_bodyA.m_jointList = j.m_edgeA; j.m_edgeB.joint = j; j.m_edgeB.other = j.m_bodyA; j.m_edgeB.prev = null; j.m_edgeB.next = j.m_bodyB.m_jointList; if (j.m_bodyB.m_jointList != null) { j.m_bodyB.m_jointList.prev = j.m_edgeB; } j.m_bodyB.m_jointList = j.m_edgeB; Body bodyA = def.bodyA; Body bodyB = def.bodyB; // If the joint prevents collisions, then flag any contacts for filtering. if (def.collideConnected == false) { ContactEdge edge = bodyB.getContactList(); while (edge != null) { if (edge.other == bodyA) { // Flag the contact for filtering at the next time step (where either // body is awake). edge.contact.flagForFiltering(); } edge = edge.next; } } // Note: creating a joint doesn't wake the bodies. return j; } /** * destroy a joint. This may cause the connected bodies to begin colliding. * * @warning This function is locked during callbacks. * @param joint */ public void destroyJoint(Joint j) { assert (isLocked() == false); if (isLocked()) { return; } boolean collideConnected = j.m_collideConnected; // Remove from the doubly linked list. if (j.m_prev != null) { j.m_prev.m_next = j.m_next; } if (j.m_next != null) { j.m_next.m_prev = j.m_prev; } if (j == m_jointList) { m_jointList = j.m_next; } // Disconnect from island graph. Body bodyA = j.m_bodyA; Body bodyB = j.m_bodyB; // Wake up connected bodies. bodyA.setAwake(true); bodyB.setAwake(true); // Remove from body 1. if (j.m_edgeA.prev != null) { j.m_edgeA.prev.next = j.m_edgeA.next; } if (j.m_edgeA.next != null) { j.m_edgeA.next.prev = j.m_edgeA.prev; } if (j.m_edgeA == bodyA.m_jointList) { bodyA.m_jointList = j.m_edgeA.next; } j.m_edgeA.prev = null; j.m_edgeA.next = null; // Remove from body 2 if (j.m_edgeB.prev != null) { j.m_edgeB.prev.next = j.m_edgeB.next; } if (j.m_edgeB.next != null) { j.m_edgeB.next.prev = j.m_edgeB.prev; } if (j.m_edgeB == bodyB.m_jointList) { bodyB.m_jointList = j.m_edgeB.next; } j.m_edgeB.prev = null; j.m_edgeB.next = null; Joint.destroy(j); assert (m_jointCount > 0); --m_jointCount; // If the joint prevents collisions, then flag any contacts for filtering. if (collideConnected == false) { ContactEdge edge = bodyB.getContactList(); while (edge != null) { if (edge.other == bodyA) { // Flag the contact for filtering at the next time step (where either // body is awake). edge.contact.flagForFiltering(); } edge = edge.next; } } } // djm pooling private final TimeStep step = new TimeStep(); private final Timer stepTimer = new Timer(); private final Timer tempTimer = new Timer(); /** * Take a time step. This performs collision detection, integration, and constraint solution. * * @param timeStep the amount of time to simulate, this should not vary. * @param velocityIterations for the velocity constraint solver. * @param positionIterations for the position constraint solver. */ public void step(float dt, int velocityIterations, int positionIterations) { stepTimer.reset(); // log.debug("Starting step"); // If new fixtures were added, we need to find the new contacts. if ((m_flags & NEW_FIXTURE) == NEW_FIXTURE) { // log.debug("There's a new fixture, lets look for new contacts"); m_contactManager.findNewContacts(); m_flags &= ~NEW_FIXTURE; } m_flags |= LOCKED; step.dt = dt; step.velocityIterations = velocityIterations; step.positionIterations = positionIterations; if (dt > 0.0f) { step.inv_dt = 1.0f / dt; } else { step.inv_dt = 0.0f; } step.dtRatio = m_inv_dt0 * dt; step.warmStarting = m_warmStarting; // Update contacts. This is where some contacts are destroyed. tempTimer.reset(); m_contactManager.collide(); m_profile.collide = tempTimer.getMilliseconds(); // Integrate velocities, solve velocity constraints, and integrate positions. if (m_stepComplete && step.dt > 0.0f) { tempTimer.reset(); solve(step); m_profile.solve = tempTimer.getMilliseconds(); } // Handle TOI events. if (m_continuousPhysics && step.dt > 0.0f) { tempTimer.reset(); solveTOI(step); m_profile.solveTOI = tempTimer.getMilliseconds(); } if (step.dt > 0.0f) { m_inv_dt0 = step.inv_dt; } if ((m_flags & CLEAR_FORCES) == CLEAR_FORCES) { clearForces(); } m_flags &= ~LOCKED; // log.debug("ending step"); m_profile.step = stepTimer.getMilliseconds(); } /** * Call this after you are done with time steps to clear the forces. You normally call this after * each call to Step, unless you are performing sub-steps. By default, forces will be * automatically cleared, so you don't need to call this function. * * @see setAutoClearForces */ public void clearForces() { for (Body body = m_bodyList; body != null; body = body.getNext()) { body.m_force.setZero(); body.m_torque = 0.0f; } } private final Color3f color = new Color3f(); private final Transform xf = new Transform(); private final Vec2 cA = new Vec2(); private final Vec2 cB = new Vec2(); private final Vec2Array avs = new Vec2Array(); /** Call this to draw shapes and other debug draw data. */ public void drawDebugData() { if (m_debugDraw == null) { return; } int flags = m_debugDraw.getFlags(); if ((flags & DebugDraw.e_shapeBit) == DebugDraw.e_shapeBit) { for (Body b = m_bodyList; b != null; b = b.getNext()) { xf.set(b.getTransform()); for (Fixture f = b.getFixtureList(); f != null; f = f.getNext()) { if (b.isActive() == false) { color.set(0.5f, 0.5f, 0.3f); drawShape(f, xf, color); } else if (b.getType() == BodyType.STATIC) { color.set(0.5f, 0.9f, 0.3f); drawShape(f, xf, color); } else if (b.getType() == BodyType.KINEMATIC) { color.set(0.5f, 0.5f, 0.9f); drawShape(f, xf, color); } else if (b.isAwake() == false) { color.set(0.5f, 0.5f, 0.5f); drawShape(f, xf, color); } else { color.set(0.9f, 0.7f, 0.7f); drawShape(f, xf, color); } } } } if ((flags & DebugDraw.e_jointBit) == DebugDraw.e_jointBit) { for (Joint j = m_jointList; j != null; j = j.getNext()) { drawJoint(j); } } if ((flags & DebugDraw.e_pairBit) == DebugDraw.e_pairBit) { color.set(0.3f, 0.9f, 0.9f); for (Contact c = m_contactManager.m_contactList; c != null; c = c.getNext()) { // Fixture fixtureA = c.getFixtureA(); // Fixture fixtureB = c.getFixtureB(); // // fixtureA.getAABB(childIndex).getCenterToOut(cA); // fixtureB.getAABB().getCenterToOut(cB); // // m_debugDraw.drawSegment(cA, cB, color); } } if ((flags & DebugDraw.e_aabbBit) == DebugDraw.e_aabbBit) { color.set(0.9f, 0.3f, 0.9f); for (Body b = m_bodyList; b != null; b = b.getNext()) { if (b.isActive() == false) { continue; } for (Fixture f = b.getFixtureList(); f != null; f = f.getNext()) { for (int i = 0; i < f.m_proxyCount; ++i) { FixtureProxy proxy = f.m_proxies[i]; AABB aabb = m_contactManager.m_broadPhase.getFatAABB(proxy.proxyId); Vec2[] vs = avs.get(4); vs[0].set(aabb.lowerBound.x, aabb.lowerBound.y); vs[1].set(aabb.upperBound.x, aabb.lowerBound.y); vs[2].set(aabb.upperBound.x, aabb.upperBound.y); vs[3].set(aabb.lowerBound.x, aabb.upperBound.y); m_debugDraw.drawPolygon(vs, 4, color); } } } } if ((flags & DebugDraw.e_centerOfMassBit) == DebugDraw.e_centerOfMassBit) { for (Body b = m_bodyList; b != null; b = b.getNext()) { xf.set(b.getTransform()); xf.p.set(b.getWorldCenter()); m_debugDraw.drawTransform(xf); } } if ((flags & DebugDraw.e_dynamicTreeBit) == DebugDraw.e_dynamicTreeBit) { m_contactManager.m_broadPhase.drawTree(m_debugDraw); } } private final WorldQueryWrapper wqwrapper = new WorldQueryWrapper(); /** * Query the world for all fixtures that potentially overlap the provided AABB. * * @param callback a user implemented callback class. * @param aabb the query box. */ public void queryAABB(QueryCallback callback, AABB aabb) { wqwrapper.broadPhase = m_contactManager.m_broadPhase; wqwrapper.callback = callback; m_contactManager.m_broadPhase.query(wqwrapper, aabb); } private final WorldRayCastWrapper wrcwrapper = new WorldRayCastWrapper(); private final RayCastInput input = new RayCastInput(); /** * Ray-cast the world for all fixtures in the path of the ray. Your callback controls whether you * get the closest point, any point, or n-points. The ray-cast ignores shapes that contain the * starting point. * * @param callback a user implemented callback class. * @param point1 the ray starting point * @param point2 the ray ending point */ public void raycast(RayCastCallback callback, Vec2 point1, Vec2 point2) { wrcwrapper.broadPhase = m_contactManager.m_broadPhase; wrcwrapper.callback = callback; input.maxFraction = 1.0f; input.p1.set(point1); input.p2.set(point2); m_contactManager.m_broadPhase.raycast(wrcwrapper, input); } /** * Get the world body list. With the returned body, use Body.getNext to get the next body in the * world list. A null body indicates the end of the list. * * @return the head of the world body list. */ public Body getBodyList() { return m_bodyList; } /** * Get the world joint list. With the returned joint, use Joint.getNext to get the next joint in * the world list. A null joint indicates the end of the list. * * @return the head of the world joint list. */ public Joint getJointList() { return m_jointList; } /** * Get the world contact list. With the returned contact, use Contact.getNext to get the next * contact in the world list. A null contact indicates the end of the list. * * @return the head of the world contact list. * @warning contacts are created and destroyed in the middle of a time step. Use ContactListener * to avoid missing contacts. */ public Contact getContactList() { return m_contactManager.m_contactList; } public boolean isSleepingAllowed() { return m_allowSleep; } public void setSleepingAllowed(boolean sleepingAllowed) { m_allowSleep = sleepingAllowed; } /** * Enable/disable warm starting. For testing. * * @param flag */ public void setWarmStarting(boolean flag) { m_warmStarting = flag; } public boolean isWarmStarting() { return m_warmStarting; } /** * Enable/disable continuous physics. For testing. * * @param flag */ public void setContinuousPhysics(boolean flag) { m_continuousPhysics = flag; } public boolean isContinuousPhysics() { return m_continuousPhysics; } /** * Get the number of broad-phase proxies. * * @return */ public int getProxyCount() { return m_contactManager.m_broadPhase.getProxyCount(); } /** * Get the number of bodies. * * @return */ public int getBodyCount() { return m_bodyCount; } /** * Get the number of joints. * * @return */ public int getJointCount() { return m_jointCount; } /** * Get the number of contacts (each may have 0 or more contact points). * * @return */ public int getContactCount() { return m_contactManager.m_contactCount; } /** * Gets the height of the dynamic tree * * @return */ public int getTreeHeight() { return m_contactManager.m_broadPhase.getTreeHeight(); } /** * Gets the balance of the dynamic tree * * @return */ public int getTreeBalance() { return m_contactManager.m_broadPhase.getTreeBalance(); } /** * Gets the quality of the dynamic tree * * @return */ public float getTreeQuality() { return m_contactManager.m_broadPhase.getTreeQuality(); } /** * Change the global gravity vector. * * @param gravity */ public void setGravity(Vec2 gravity) { m_gravity.set(gravity); } /** * Get the global gravity vector. * * @return */ public Vec2 getGravity() { return m_gravity; } /** * Is the world locked (in the middle of a time step). * * @return */ public boolean isLocked() { return (m_flags & LOCKED) == LOCKED; } /** * Set flag to control automatic clearing of forces after each time step. * * @param flag */ public void setAutoClearForces(boolean flag) { if (flag) { m_flags |= CLEAR_FORCES; } else { m_flags &= ~CLEAR_FORCES; } } /** * Get the flag that controls automatic clearing of forces after each time step. * * @return */ public boolean getAutoClearForces() { return (m_flags & CLEAR_FORCES) == CLEAR_FORCES; } /** * Get the contact manager for testing purposes * * @return */ public ContactManager getContactManager() { return m_contactManager; } public Profile getProfile() { return m_profile; } private final Island island = new Island(); private Body[] stack = new Body[10]; // TODO djm find a good initial stack number; private final Profile islandProfile = new Profile(); private final Timer broadphaseTimer = new Timer(); private void solve(TimeStep step) { m_profile.solveInit = 0; m_profile.solveVelocity = 0; m_profile.solvePosition = 0; // Size the island for the worst case. island.init( m_bodyCount, m_contactManager.m_contactCount, m_jointCount, m_contactManager.m_contactListener); // Clear all the island flags. for (Body b = m_bodyList; b != null; b = b.m_next) { b.m_flags &= ~Body.e_islandFlag; } for (Contact c = m_contactManager.m_contactList; c != null; c = c.m_next) { c.m_flags &= ~Contact.ISLAND_FLAG; } for (Joint j = m_jointList; j != null; j = j.m_next) { j.m_islandFlag = false; } // Build and simulate all awake islands. int stackSize = m_bodyCount; if (stack.length < stackSize) { stack = new Body[stackSize]; } for (Body seed = m_bodyList; seed != null; seed = seed.m_next) { if ((seed.m_flags & Body.e_islandFlag) == Body.e_islandFlag) { continue; } if (seed.isAwake() == false || seed.isActive() == false) { continue; } // The seed can be dynamic or kinematic. if (seed.getType() == BodyType.STATIC) { continue; } // Reset island and stack. island.clear(); int stackCount = 0; stack[stackCount++] = seed; seed.m_flags |= Body.e_islandFlag; // Perform a depth first search (DFS) on the constraint graph. while (stackCount > 0) { // Grab the next body off the stack and add it to the island. Body b = stack[--stackCount]; assert (b.isActive() == true); island.add(b); // Make sure the body is awake. b.setAwake(true); // To keep islands as small as possible, we don't // propagate islands across static bodies. if (b.getType() == BodyType.STATIC) { continue; } // Search all contacts connected to this body. for (ContactEdge ce = b.m_contactList; ce != null; ce = ce.next) { Contact contact = ce.contact; // Has this contact already been added to an island? if ((contact.m_flags & Contact.ISLAND_FLAG) == Contact.ISLAND_FLAG) { continue; } // Is this contact solid and touching? if (contact.isEnabled() == false || contact.isTouching() == false) { continue; } // Skip sensors. boolean sensorA = contact.m_fixtureA.m_isSensor; boolean sensorB = contact.m_fixtureB.m_isSensor; if (sensorA || sensorB) { continue; } island.add(contact); contact.m_flags |= Contact.ISLAND_FLAG; Body other = ce.other; // Was the other body already added to this island? if ((other.m_flags & Body.e_islandFlag) == Body.e_islandFlag) { continue; } assert (stackCount < stackSize); stack[stackCount++] = other; other.m_flags |= Body.e_islandFlag; } // Search all joints connect to this body. for (JointEdge je = b.m_jointList; je != null; je = je.next) { if (je.joint.m_islandFlag == true) { continue; } Body other = je.other; // Don't simulate joints connected to inactive bodies. if (other.isActive() == false) { continue; } island.add(je.joint); je.joint.m_islandFlag = true; if ((other.m_flags & Body.e_islandFlag) == Body.e_islandFlag) { continue; } assert (stackCount < stackSize); stack[stackCount++] = other; other.m_flags |= Body.e_islandFlag; } } island.solve(islandProfile, step, m_gravity, m_allowSleep); m_profile.solveInit += islandProfile.solveInit; m_profile.solveVelocity += islandProfile.solveVelocity; m_profile.solvePosition += islandProfile.solvePosition; // Post solve cleanup. for (int i = 0; i < island.m_bodyCount; ++i) { // Allow static bodies to participate in other islands. Body b = island.m_bodies[i]; if (b.getType() == BodyType.STATIC) { b.m_flags &= ~Body.e_islandFlag; } } } broadphaseTimer.reset(); // Synchronize fixtures, check for out of range bodies. for (Body b = m_bodyList; b != null; b = b.getNext()) { // If a body was not in an island then it did not move. if ((b.m_flags & Body.e_islandFlag) == 0) { continue; } if (b.getType() == BodyType.STATIC) { continue; } // Update fixtures (for broad-phase). b.synchronizeFixtures(); } // Look for new contacts. m_contactManager.findNewContacts(); m_profile.broadphase = broadphaseTimer.getMilliseconds(); } private final Island toiIsland = new Island(); private final TOIInput toiInput = new TOIInput(); private final TOIOutput toiOutput = new TOIOutput(); private final TimeStep subStep = new TimeStep(); private final Body[] tempBodies = new Body[2]; private final Sweep backup1 = new Sweep(); private final Sweep backup2 = new Sweep(); private void solveTOI(final TimeStep step) { final Island island = toiIsland; island.init( 2 * Settings.maxTOIContacts, Settings.maxTOIContacts, 0, m_contactManager.m_contactListener); if (m_stepComplete) { for (Body b = m_bodyList; b != null; b = b.m_next) { b.m_flags &= ~Body.e_islandFlag; b.m_sweep.alpha0 = 0.0f; } for (Contact c = m_contactManager.m_contactList; c != null; c = c.m_next) { // Invalidate TOI c.m_flags &= ~(Contact.TOI_FLAG | Contact.ISLAND_FLAG); c.m_toiCount = 0; c.m_toi = 1.0f; } } // Find TOI events and solve them. for (; ; ) { // Find the first TOI. Contact minContact = null; float minAlpha = 1.0f; for (Contact c = m_contactManager.m_contactList; c != null; c = c.m_next) { // Is this contact disabled? if (c.isEnabled() == false) { continue; } // Prevent excessive sub-stepping. if (c.m_toiCount > Settings.maxSubSteps) { continue; } float alpha = 1.0f; if ((c.m_flags & Contact.TOI_FLAG) != 0) { // This contact has a valid cached TOI. alpha = c.m_toi; } else { Fixture fA = c.getFixtureA(); Fixture fB = c.getFixtureB(); // Is there a sensor? if (fA.isSensor() || fB.isSensor()) { continue; } Body bA = fA.getBody(); Body bB = fB.getBody(); BodyType typeA = bA.m_type; BodyType typeB = bB.m_type; assert (typeA == BodyType.DYNAMIC || typeB == BodyType.DYNAMIC); boolean activeA = bA.isAwake() && typeA != BodyType.STATIC; boolean activeB = bB.isAwake() && typeB != BodyType.STATIC; // Is at least one body active (awake and dynamic or kinematic)? if (activeA == false && activeB == false) { continue; } boolean collideA = bA.isBullet() || typeA != BodyType.DYNAMIC; boolean collideB = bB.isBullet() || typeB != BodyType.DYNAMIC; // Are these two non-bullet dynamic bodies? if (collideA == false && collideB == false) { continue; } // Compute the TOI for this contact. // Put the sweeps onto the same time interval. float alpha0 = bA.m_sweep.alpha0; if (bA.m_sweep.alpha0 < bB.m_sweep.alpha0) { alpha0 = bB.m_sweep.alpha0; bA.m_sweep.advance(alpha0); } else if (bB.m_sweep.alpha0 < bA.m_sweep.alpha0) { alpha0 = bA.m_sweep.alpha0; bB.m_sweep.advance(alpha0); } assert (alpha0 < 1.0f); int indexA = c.getChildIndexA(); int indexB = c.getChildIndexB(); // Compute the time of impact in interval [0, minTOI] final TOIInput input = toiInput; input.proxyA.set(fA.getShape(), indexA); input.proxyB.set(fB.getShape(), indexB); input.sweepA.set(bA.m_sweep); input.sweepB.set(bB.m_sweep); input.tMax = 1.0f; pool.getTimeOfImpact().timeOfImpact(toiOutput, input); // Beta is the fraction of the remaining portion of the . float beta = toiOutput.t; if (toiOutput.state == TOIOutputState.TOUCHING) { alpha = MathUtils.min(alpha0 + (1.0f - alpha0) * beta, 1.0f); } else { alpha = 1.0f; } c.m_toi = alpha; c.m_flags |= Contact.TOI_FLAG; } if (alpha < minAlpha) { // This is the minimum TOI found so far. minContact = c; minAlpha = alpha; } } if (minContact == null || 1.0f - 10.0f * Settings.EPSILON < minAlpha) { // No more TOI events. Done! m_stepComplete = true; break; } // Advance the bodies to the TOI. Fixture fA = minContact.getFixtureA(); Fixture fB = minContact.getFixtureB(); Body bA = fA.getBody(); Body bB = fB.getBody(); backup1.set(bA.m_sweep); backup2.set(bB.m_sweep); bA.advance(minAlpha); bB.advance(minAlpha); // The TOI contact likely has some new contact points. minContact.update(m_contactManager.m_contactListener); minContact.m_flags &= ~Contact.TOI_FLAG; ++minContact.m_toiCount; // Is the contact solid? if (minContact.isEnabled() == false || minContact.isTouching() == false) { // Restore the sweeps. minContact.setEnabled(false); bA.m_sweep.set(backup1); bB.m_sweep.set(backup2); bA.synchronizeTransform(); bB.synchronizeTransform(); continue; } bA.setAwake(true); bB.setAwake(true); // Build the island island.clear(); island.add(bA); island.add(bB); island.add(minContact); bA.m_flags |= Body.e_islandFlag; bB.m_flags |= Body.e_islandFlag; minContact.m_flags |= Contact.ISLAND_FLAG; // Get contacts on bodyA and bodyB. tempBodies[0] = bA; tempBodies[1] = bB; for (int i = 0; i < 2; ++i) { Body body = tempBodies[i]; if (body.m_type == BodyType.DYNAMIC) { for (ContactEdge ce = body.m_contactList; ce != null; ce = ce.next) { if (island.m_bodyCount == island.m_bodyCapacity) { break; } if (island.m_contactCount == island.m_contactCapacity) { break; } Contact contact = ce.contact; // Has this contact already been added to the island? if ((contact.m_flags & Contact.ISLAND_FLAG) != 0) { continue; } // Only add static, kinematic, or bullet bodies. Body other = ce.other; if (other.m_type == BodyType.DYNAMIC && body.isBullet() == false && other.isBullet() == false) { continue; } // Skip sensors. boolean sensorA = contact.m_fixtureA.m_isSensor; boolean sensorB = contact.m_fixtureB.m_isSensor; if (sensorA || sensorB) { continue; } // Tentatively advance the body to the TOI. backup1.set(other.m_sweep); if ((other.m_flags & Body.e_islandFlag) == 0) { other.advance(minAlpha); } // Update the contact points contact.update(m_contactManager.m_contactListener); // Was the contact disabled by the user? if (contact.isEnabled() == false) { other.m_sweep.set(backup1); other.synchronizeTransform(); continue; } // Are there contact points? if (contact.isTouching() == false) { other.m_sweep.set(backup1); other.synchronizeTransform(); continue; } // Add the contact to the island contact.m_flags |= Contact.ISLAND_FLAG; island.add(contact); // Has the other body already been added to the island? if ((other.m_flags & Body.e_islandFlag) != 0) { continue; } // Add the other body to the island. other.m_flags |= Body.e_islandFlag; if (other.m_type != BodyType.STATIC) { other.setAwake(true); } island.add(other); } } } subStep.dt = (1.0f - minAlpha) * step.dt; subStep.inv_dt = 1.0f / subStep.dt; subStep.dtRatio = 1.0f; subStep.positionIterations = 20; subStep.velocityIterations = step.velocityIterations; subStep.warmStarting = false; island.solveTOI(subStep, bA.m_islandIndex, bB.m_islandIndex); // Reset island flags and synchronize broad-phase proxies. for (int i = 0; i < island.m_bodyCount; ++i) { Body body = island.m_bodies[i]; body.m_flags &= ~Body.e_islandFlag; if (body.m_type != BodyType.DYNAMIC) { continue; } body.synchronizeFixtures(); // Invalidate all contact TOIs on this displaced body. for (ContactEdge ce = body.m_contactList; ce != null; ce = ce.next) { ce.contact.m_flags &= ~(Contact.TOI_FLAG | Contact.ISLAND_FLAG); } } // Commit fixture proxy movements to the broad-phase so that new contacts are created. // Also, some contacts can be destroyed. m_contactManager.findNewContacts(); if (m_subStepping) { m_stepComplete = false; break; } } } private void drawJoint(Joint joint) { Body bodyA = joint.getBodyA(); Body bodyB = joint.getBodyB(); Transform xf1 = bodyA.getTransform(); Transform xf2 = bodyB.getTransform(); Vec2 x1 = xf1.p; Vec2 x2 = xf2.p; Vec2 p1 = pool.popVec2(); Vec2 p2 = pool.popVec2(); joint.getAnchorA(p1); joint.getAnchorB(p2); color.set(0.5f, 0.8f, 0.8f); switch (joint.getType()) { // TODO djm write after writing joints case DISTANCE: m_debugDraw.drawSegment(p1, p2, color); break; case PULLEY: { PulleyJoint pulley = (PulleyJoint) joint; Vec2 s1 = pulley.getGroundAnchorA(); Vec2 s2 = pulley.getGroundAnchorB(); m_debugDraw.drawSegment(s1, p1, color); m_debugDraw.drawSegment(s2, p2, color); m_debugDraw.drawSegment(s1, s2, color); } break; case CONSTANT_VOLUME: case MOUSE: // don't draw this break; default: m_debugDraw.drawSegment(x1, p1, color); m_debugDraw.drawSegment(p1, p2, color); m_debugDraw.drawSegment(x2, p2, color); } pool.pushVec2(2); } // NOTE this corresponds to the liquid test, so the debugdraw can draw // the liquid particles correctly. They should be the same. private static Integer LIQUID_INT = new Integer(1234598372); private float liquidLength = .12f; private float averageLinearVel = -1; private final Vec2 liquidOffset = new Vec2(); private final Vec2 circCenterMoved = new Vec2(); private final Color3f liquidColor = new Color3f(.4f, .4f, 1f); private final Vec2 center = new Vec2(); private final Vec2 axis = new Vec2(); private final Vec2 v1 = new Vec2(); private final Vec2 v2 = new Vec2(); private final Vec2Array tlvertices = new Vec2Array(); private void drawShape(Fixture fixture, Transform xf, Color3f color) { switch (fixture.getType()) { case CIRCLE: { CircleShape circle = (CircleShape) fixture.getShape(); // Vec2 center = Mul(xf, circle.m_p); Transform.mulToOutUnsafe(xf, circle.m_p, center); float radius = circle.m_radius; xf.q.getXAxis(axis); if (fixture.getUserData() != null && fixture.getUserData().equals(LIQUID_INT)) { Body b = fixture.getBody(); liquidOffset.set(b.m_linearVelocity); float linVelLength = b.m_linearVelocity.length(); if (averageLinearVel == -1) { averageLinearVel = linVelLength; } else { averageLinearVel = .98f * averageLinearVel + .02f * linVelLength; } liquidOffset.mulLocal(liquidLength / averageLinearVel / 2); circCenterMoved.set(center).addLocal(liquidOffset); center.subLocal(liquidOffset); m_debugDraw.drawSegment(center, circCenterMoved, liquidColor); return; } m_debugDraw.drawSolidCircle(center, radius, axis, color); } break; case POLYGON: { PolygonShape poly = (PolygonShape) fixture.getShape(); int vertexCount = poly.m_count; assert (vertexCount <= Settings.maxPolygonVertices); Vec2[] vertices = tlvertices.get(Settings.maxPolygonVertices); for (int i = 0; i < vertexCount; ++i) { // vertices[i] = Mul(xf, poly.m_vertices[i]); Transform.mulToOutUnsafe(xf, poly.m_vertices[i], vertices[i]); } m_debugDraw.drawSolidPolygon(vertices, vertexCount, color); } break; case EDGE: { EdgeShape edge = (EdgeShape) fixture.getShape(); Transform.mulToOutUnsafe(xf, edge.m_vertex1, v1); Transform.mulToOutUnsafe(xf, edge.m_vertex2, v2); m_debugDraw.drawSegment(v1, v2, color); } break; case CHAIN: { ChainShape chain = (ChainShape) fixture.getShape(); int count = chain.m_count; Vec2[] vertices = chain.m_vertices; Transform.mulToOutUnsafe(xf, vertices[0], v1); for (int i = 1; i < count; ++i) { Transform.mulToOutUnsafe(xf, vertices[i], v2); m_debugDraw.drawSegment(v1, v2, color); m_debugDraw.drawCircle(v1, 0.05f, color); v1.set(v2); } } break; default: break; } } }