/** {@inheritDoc} */ @Override public void loadCache(GridBiInClosure<K, V> c, @Nullable Object... args) throws GridException { ExecutorService exec = new ThreadPoolExecutor( threadsCnt, threadsCnt, 0L, MILLISECONDS, new ArrayBlockingQueue<Runnable>(batchQueueSize), new BlockingRejectedExecutionHandler()); Iterator<I> iter = inputIterator(args); Collection<I> buf = new ArrayList<>(batchSize); try { while (iter.hasNext()) { if (Thread.currentThread().isInterrupted()) { U.warn(log, "Working thread was interrupted while loading data."); break; } buf.add(iter.next()); if (buf.size() == batchSize) { exec.submit(new Worker(c, buf, args)); buf = new ArrayList<>(batchSize); } } if (!buf.isEmpty()) exec.submit(new Worker(c, buf, args)); } catch (RejectedExecutionException ignored) { // Because of custom RejectedExecutionHandler. assert false : "RejectedExecutionException was thrown while it shouldn't."; } finally { exec.shutdown(); try { exec.awaitTermination(Long.MAX_VALUE, MILLISECONDS); } catch (InterruptedException ignored) { U.warn(log, "Working thread was interrupted while waiting for put operations to complete."); Thread.currentThread().interrupt(); } } }
/** * @param concurrency Concurrency. * @param isolation Isolation. * @throws GridException If test failed. */ private void checkTransactionTimeout( GridCacheTxConcurrency concurrency, GridCacheTxIsolation isolation) throws Exception { boolean wasEx = false; GridCacheTx tx = null; try { GridCache<Integer, String> cache = grid.cache(null); tx = cache.txStart(concurrency, isolation, 50, 0); cache.put(1, "1"); Thread.sleep(100); cache.put(1, "2"); tx.commit(); } catch (GridCacheTxOptimisticException e) { info("Received expected optimistic exception: " + e.getMessage()); wasEx = true; tx.rollback(); } catch (GridCacheTxTimeoutException e) { info("Received expected timeout exception: " + e.getMessage()); wasEx = true; tx.rollback(); } assert wasEx; }
/** @throws Exception If failed. */ public void testDisabledRest() throws Exception { restEnabled = false; final Grid g = startGrid("disabled-rest"); try { Thread.sleep(2 * TOP_REFRESH_FREQ); // As long as we have round robin load balancer this will cause every node to be queried. for (int i = 0; i < NODES_CNT + 1; i++) assertEquals(NODES_CNT + 1, client.compute().refreshTopology(false, false).size()); final GridClientData data = client.data(PARTITIONED_CACHE_NAME); // Check rest-disabled node is unavailable. try { String affKey; do { affKey = UUID.randomUUID().toString(); } while (!data.affinity(affKey).equals(g.localNode().id())); data.put(affKey, "asdf"); assertEquals("asdf", cache(0, PARTITIONED_CACHE_NAME).get(affKey)); } catch (GridServerUnreachableException e) { // Thrown for direct client-node connections. assertTrue( "Unexpected exception message: " + e.getMessage(), e.getMessage() .startsWith("No available endpoints to connect (is rest enabled for this node?)")); } catch (GridClientException e) { // Thrown for routed client-router-node connections. String msg = e.getMessage(); assertTrue( "Unexpected exception message: " + msg, protocol() == GridClientProtocol.TCP ? msg.contains("No available endpoints to connect (is rest enabled for this node?)") : // TCP router. msg.startsWith( "No available nodes on the router for destination node ID")); // HTTP router. } // Check rest-enabled nodes are available. String affKey; do { affKey = UUID.randomUUID().toString(); } while (data.affinity(affKey).equals(g.localNode().id())); data.put(affKey, "fdsa"); assertEquals("fdsa", cache(0, PARTITIONED_CACHE_NAME).get(affKey)); } finally { restEnabled = true; G.stop(g.name(), true); } }
/** @throws Exception If failed. */ public void testAffinityPut() throws Exception { Thread.sleep(2 * TOP_REFRESH_FREQ); assertEquals(NODES_CNT, client.compute().refreshTopology(false, false).size()); Map<UUID, Grid> gridsByLocNode = new HashMap<>(NODES_CNT); GridClientData partitioned = client.data(PARTITIONED_CACHE_NAME); GridClientCompute compute = client.compute(); for (int i = 0; i < NODES_CNT; i++) gridsByLocNode.put(grid(i).localNode().id(), grid(i)); for (int i = 0; i < 100; i++) { String key = "key" + i; UUID primaryNodeId = grid(0).mapKeyToNode(PARTITIONED_CACHE_NAME, key).id(); assertEquals("Affinity mismatch for key: " + key, primaryNodeId, partitioned.affinity(key)); assertEquals(primaryNodeId, partitioned.affinity(key)); // Must go to primary node only. Since backup count is 0, value must present on // primary node only. partitioned.put(key, "val" + key); for (Map.Entry<UUID, Grid> entry : gridsByLocNode.entrySet()) { Object val = entry.getValue().cache(PARTITIONED_CACHE_NAME).peek(key); if (primaryNodeId.equals(entry.getKey())) assertEquals("val" + key, val); else assertNull(val); } } // Now check that we will see value in near cache in pinned mode. for (int i = 100; i < 200; i++) { String pinnedKey = "key" + i; UUID primaryNodeId = grid(0).mapKeyToNode(PARTITIONED_CACHE_NAME, pinnedKey).id(); UUID pinnedNodeId = F.first(F.view(gridsByLocNode.keySet(), F.notEqualTo(primaryNodeId))); GridClientNode node = compute.node(pinnedNodeId); partitioned.pinNodes(node).put(pinnedKey, "val" + pinnedKey); for (Map.Entry<UUID, Grid> entry : gridsByLocNode.entrySet()) { Object val = entry.getValue().cache(PARTITIONED_CACHE_NAME).peek(pinnedKey); if (primaryNodeId.equals(entry.getKey()) || pinnedNodeId.equals(entry.getKey())) assertEquals("val" + pinnedKey, val); else assertNull(val); } } }
/** {@inheritDoc} */ @Override public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) { try { if (executor.isShutdown()) throw new RejectedExecutionException(); else executor.getQueue().put(r); } catch (InterruptedException ignored) { U.warn(log, "Working thread was interrupted while loading data."); Thread.currentThread().interrupt(); } }
/** * Executes example. * * @param args Command line arguments, none required. * @throws GridException If example execution failed. */ public static void main(String[] args) throws Exception { try (Grid grid = GridGain.start("examples/config/example-cache.xml")) { System.out.println(); System.out.println(">>> Events API example started."); // Listen to events happening on local node. localListen(); // Listen to events happening on all grid nodes. remoteListen(); // Wait for a while while callback is notified about remaining puts. Thread.sleep(1000); } }
/** * Basically, future mapping consists from two parts. First, we must determine the topology * version this future will map on. Locking is performed within a user transaction, we must * continue to map keys on the same topology version as it started. If topology version is * undefined, we get current topology future and wait until it completes so the topology is ready * to use. * * <p>During the second part we map keys to primary nodes using topology snapshot we obtained * during the first part. Note that if primary node leaves grid, the future will fail and * transaction will be rolled back. */ void map() { // Obtain the topology version to use. GridDiscoveryTopologySnapshot snapshot = tx != null ? tx.topologySnapshot() : cctx.mvcc().lastExplicitLockTopologySnapshot(Thread.currentThread().getId()); if (snapshot != null) { // Continue mapping on the same topology version as it was before. topSnapshot.compareAndSet(null, snapshot); map(keys); markInitialized(); return; } // Must get topology snapshot and map on that version. mapOnTopology(); }
/** * @param cctx Registry. * @param keys Keys to lock. * @param tx Transaction. * @param read Read flag. * @param retval Flag to return value or not. * @param timeout Lock acquisition timeout. * @param filter Filter. */ public GridNearLockFuture( GridCacheContext<K, V> cctx, Collection<? extends K> keys, @Nullable GridNearTxLocal<K, V> tx, boolean read, boolean retval, long timeout, GridPredicate<GridCacheEntry<K, V>>[] filter) { super(cctx.kernalContext(), CU.boolReducer()); assert cctx != null; assert keys != null; this.cctx = cctx; this.keys = keys; this.tx = tx; this.read = read; this.retval = retval; this.timeout = timeout; this.filter = filter; threadId = tx == null ? Thread.currentThread().getId() : tx.threadId(); lockVer = tx != null ? tx.xidVersion() : cctx.versions().next(); futId = GridUuid.randomUuid(); entries = new ArrayList<>(keys.size()); log = U.logger(ctx, logRef, GridNearLockFuture.class); if (timeout > 0) { timeoutObj = new LockTimeoutObject(); cctx.time().addTimeoutObject(timeoutObj); } valMap = new ConcurrentHashMap8<>(keys.size(), 1f); }
/** * Checks availability of a classpath resource. * * @param name Resource name. * @return {@code true} if resource is available and ready for read, {@code false} otherwise. */ private boolean resourceAvailable(String name) { InputStream cfgStream = Thread.currentThread().getContextClassLoader().getResourceAsStream(name); if (cfgStream == null) { log.error("Classpath resource not found: " + name); return false; } try { // Read a single byte to force actual content access by JVM. cfgStream.read(); return true; } catch (IOException e) { log.error("Failed to read classpath resource: " + name, e); return false; } finally { U.close(cfgStream, log); } }
/** {@inheritDoc} */ @Override public void unlockAll( Collection<? extends K> keys, GridPredicate<? super GridCacheEntry<K, V>>[] filter) { if (keys.isEmpty()) return; try { GridCacheVersion ver = null; Collection<GridRichNode> affNodes = null; int keyCnt = -1; Map<GridRichNode, GridNearUnlockRequest<K, V>> map = null; Collection<K> locKeys = new LinkedList<K>(); GridCacheVersion obsoleteVer = ctx.versions().next(); for (K key : keys) { while (true) { GridDistributedCacheEntry<K, V> entry = peekExx(key); if (entry == null || !ctx.isAll(entry.wrap(false), filter)) break; // While. try { GridCacheMvccCandidate<K> cand = entry.candidate(ctx.nodeId(), Thread.currentThread().getId()); if (cand != null) { ver = cand.version(); if (affNodes == null) { affNodes = CU.allNodes(ctx, cand.topologyVersion()); keyCnt = (int) Math.ceil((double) keys.size() / affNodes.size()); map = new HashMap<GridRichNode, GridNearUnlockRequest<K, V>>(affNodes.size()); } // Send request to remove from remote nodes. GridRichNode primary = CU.primary0(ctx.affinity(key, affNodes)); GridNearUnlockRequest<K, V> req = map.get(primary); if (req == null) { map.put(primary, req = new GridNearUnlockRequest<K, V>(keyCnt)); req.version(ver); } // Remove candidate from local node first. GridCacheMvccCandidate<K> rmv = entry.removeLock(); if (rmv != null) { if (!rmv.reentry()) { if (ver != null && !ver.equals(rmv.version())) throw new GridException( "Failed to unlock (if keys were locked separately, " + "then they need to be unlocked separately): " + keys); if (!primary.isLocal()) { assert req != null; req.addKey(entry.key(), entry.getOrMarshalKeyBytes(), ctx); } else locKeys.add(key); if (log.isDebugEnabled()) log.debug("Removed lock (will distribute): " + rmv); } else if (log.isDebugEnabled()) log.debug( "Current thread still owns lock (or there are no other nodes)" + " [lock=" + rmv + ", curThreadId=" + Thread.currentThread().getId() + ']'); } // Try to evict near entry if it's dht-mapped locally. evictNearEntry(entry, obsoleteVer); } break; } catch (GridCacheEntryRemovedException ignore) { if (log.isDebugEnabled()) log.debug("Attempted to unlock removed entry (will retry): " + entry); } } } if (ver == null) return; for (Map.Entry<GridRichNode, GridNearUnlockRequest<K, V>> mapping : map.entrySet()) { GridRichNode n = mapping.getKey(); GridDistributedUnlockRequest<K, V> req = mapping.getValue(); if (n.isLocal()) dht.removeLocks(ctx.nodeId(), req.version(), locKeys, true); else if (!req.keyBytes().isEmpty()) // We don't wait for reply to this message. ctx.io().send(n, req); } } catch (GridException ex) { U.error(log, "Failed to unlock the lock for keys: " + keys, ex); } }
/** {@inheritDoc} */ @SuppressWarnings({"unchecked"}) @Override public void unlockAll( Collection<? extends K> keys, GridPredicate<? super GridCacheEntry<K, V>>[] filter) { if (keys == null || keys.isEmpty()) return; Collection<? extends GridNode> nodes = ctx.remoteNodes(keys); try { GridDistributedUnlockRequest<K, V> req = new GridDistributedUnlockRequest<K, V>(keys.size()); for (K key : keys) { GridDistributedCacheEntry<K, V> entry = entryexx(key); if (!ctx.isAll(entry.wrap(false), filter)) continue; // Unlock local lock first. GridCacheMvccCandidate<K> rmv = entry.removeLock(); if (rmv != null && !nodes.isEmpty()) { if (!rmv.reentry()) { req.addKey(entry.key(), entry.getOrMarshalKeyBytes(), ctx); // We are assuming that lock ID is the same for all keys. req.version(rmv.version()); if (log.isDebugEnabled()) log.debug("Removed lock (will distribute): " + rmv); } else { if (log.isDebugEnabled()) log.debug( "Locally unlocked lock reentry without distributing to other nodes [removed=" + rmv + ", entry=" + entry + ']'); } } else { if (log.isDebugEnabled()) log.debug( "Current thread still owns lock (or there are no other nodes) [lock=" + rmv + ", curThreadId=" + Thread.currentThread().getId() + ']'); } } // Don't proceed of no keys to unlock. if (req.keyBytes().isEmpty()) { if (log.isDebugEnabled()) log.debug("No keys to unlock locally (was it reentry unlock?): " + keys); return; } // We don't wait for reply to this message. Receiving side will have // to make sure that unlock requests don't come before lock requests. ctx.io().safeSend(nodes, req, null); } catch (GridException e) { U.error(log, "Failed to unlock keys: " + keys, e); } }
/** {@inheritDoc} */ @SuppressWarnings({"unchecked", "ThrowableInstanceNeverThrown"}) @Override protected GridFuture<Boolean> lockAllAsync( Collection<? extends K> keys, long timeout, GridCacheTxLocalEx<K, V> tx, boolean isInvalidate, boolean isRead, boolean retval, GridCacheTxIsolation isolation, GridPredicate<? super GridCacheEntry<K, V>>[] filter) { if (keys.isEmpty()) return new GridFinishedFuture<Boolean>(ctx.kernalContext(), true); Collection<GridRichNode> nodes = ctx.remoteNodes(keys); final GridReplicatedLockFuture<K, V> fut = new GridReplicatedLockFuture<K, V>(ctx, keys, tx, this, nodes, timeout, filter); GridDistributedLockRequest<K, V> req = new GridDistributedLockRequest<K, V>( locNodeId, Thread.currentThread().getId(), fut.futureId(), fut.version(), tx != null, isRead, isolation, isInvalidate, timeout, keys.size()); try { // Must add future before redying locks. if (!ctx.mvcc().addFuture(fut)) throw new IllegalStateException("Duplicate future ID: " + fut); boolean distribute = false; for (K key : keys) { while (true) { GridDistributedCacheEntry<K, V> entry = null; try { entry = entryexx(key); if (!ctx.isAll(entry.wrap(false), filter)) { if (log.isDebugEnabled()) log.debug("Entry being locked did not pass filter (will not lock): " + entry); fut.onDone(false); return fut; } // Removed exception may be thrown here. GridCacheMvccCandidate<K> cand = fut.addEntry(entry); if (cand != null) { req.addKeyBytes( key, cand.reentry() ? null : entry.getOrMarshalKeyBytes(), retval, entry.localCandidates(fut.version()), ctx); req.completedVersions( ctx.tm().committedVersions(fut.version()), ctx.tm().rolledbackVersions(fut.version())); distribute = !cand.reentry(); } else if (fut.isDone()) return fut; break; } catch (GridCacheEntryRemovedException ignored) { if (log.isDebugEnabled()) log.debug("Got removed entry in lockAsync(..) method (will retry): " + entry); } } } // If nothing to distribute at this point, // then all locks are reentries. if (!distribute) fut.complete(true); if (nodes.isEmpty()) fut.readyLocks(); // No reason to send request if all locks are locally re-entered, // or if timeout is negative and local locks could not be acquired. if (fut.isDone()) return fut; try { ctx.io() .safeSend( fut.nodes(), req, new P1<GridNode>() { @Override public boolean apply(GridNode node) { fut.onNodeLeft(node.id()); return !fut.isDone(); } }); } catch (GridException e) { U.error( log, "Failed to send lock request to node [nodes=" + U.toShortString(nodes) + ", req=" + req + ']', e); fut.onError(e); } return fut; } catch (GridException e) { Throwable err = new GridException("Failed to acquire asynchronous lock for keys: " + keys, e); // Clean-up. fut.onError(err); ctx.mvcc().removeFuture(fut); return fut; } }
/** * JUnit. * * @throws Exception In case of error. */ @SuppressWarnings({"TooBroadScope"}) public void testH2Text() throws Exception { int duration = 60 * 1000; final int keyCnt = 5000; final int logFreq = 50; final String txt = "Value"; final GridCache<Integer, H2TextValue> c = grid(0).cache(null); GridFuture<?> fut1 = multithreadedAsync( new Callable() { @Override public Object call() throws Exception { for (int i = 0; i < keyCnt; i++) { c.putx(i, new H2TextValue(txt)); if (i % logFreq == 0) X.println("Stored values: " + i); } return null; } }, 1); // Create query. final GridCacheQuery<Map.Entry<Integer, H2TextValue>> qry = c.queries().createFullTextQuery(H2TextValue.class, txt); qry.enableDedup(false); qry.includeBackups(false); qry.timeout(TEST_TIMEOUT); final AtomicBoolean stop = new AtomicBoolean(); GridFuture<?> fut2 = multithreadedAsync( new Callable() { @Override public Object call() throws Exception { int cnt = 0; while (!stop.get()) { Collection<Map.Entry<Integer, H2TextValue>> res = qry.execute().get(); cnt++; if (cnt % logFreq == 0) { X.println("Result set: " + res.size()); X.println("Executed queries: " + cnt); } } return null; } }, 1); Thread.sleep(duration); fut1.get(); stop.set(true); fut2.get(); }