Esempio n. 1
0
 /**
  * Main pick function. If table size is greater then or equal to 16, it will use heuristic
  * algorithm.
  *
  * @param limit maximum value of combinations
  * @param items object value table
  * @return solution
  */
 public static <T> Pack<T> pick(Long limit, AbstractMap<T, Long> items) {
   if (items.size() < 26) {
     return Pack.binarySearch(limit, items);
   } else {
     return Pack.geneticAlgorithm(limit, items);
   }
 }
Esempio n. 2
0
  /**
   * Back-end to pick using BFS.
   *
   * @param limit maximum value of combinations
   * @param items object value table
   * @return solution
   */
  public static <T> Pack<T> breadthFirstSearch(Long limit, AbstractMap<T, Long> items) {
    if (Pack.needSearch(limit, items)) {
      return new Pack<T>(limit, new ArrayList<T>(items.keySet()));
    }

    ArrayList<Pack<T>> table = new ArrayList<Pack<T>>();
    table.add(new Pack<T>());

    for (Entry<T, Long> e : items.entrySet()) {
      ArrayList<Pack<T>> tmp = new ArrayList<Pack<T>>();
      for (Pack<T> p : table) {
        Long newSize = p.getScore() + e.getValue();
        if (newSize <= limit) {
          ArrayList<T> newDirs = new ArrayList<T>(p.getItems());
          newDirs.add(e.getKey());
          tmp.add(new Pack<T>(newSize, newDirs));
        }
      }
      table.addAll(table.size(), tmp);
    }

    Pack<T> max = new Pack<T>();
    for (Pack<T> p : table) {
      if (p.getScore() >= max.getScore()) {
        max = p;
      }
    }
    return max;
  }
Esempio n. 3
0
 public Pack<T> call(int n, Pack<T> p) {
   if (p.score_ > this.limit_) {
     return new Pack<T>();
   } else if (n == this.keys_.size()) {
     return p;
   } else {
     Pack<T> a = this.call(n + 1, p);
     Pack<T> b = this.call(n + 1, p.add(this.keys_.get(n), this.values_.get(n)));
     if (a.compareTo(b) > 0) {
       return a;
     } else {
       return b;
     }
   }
 }
Esempio n. 4
0
    public Pack<T> call() {
      while (!this.canStop()) {
        this.crossOver();
        this.mutation();
        Collections.sort(this.population_);
        this.population_.subList(this.table_.size(), this.population_.size()).clear();
      }

      Cell<T> survivor = this.population_.get(0);
      Pack<T> result = new Pack<T>(survivor.getValue(), new ArrayList<T>());
      for (Entry<T, Boolean> e : survivor.getTable().entrySet()) {
        if (e.getValue()) {
          result.getItems().add(e.getKey());
        }
      }
      return result;
    }
Esempio n. 5
0
 /**
  * Back-end to pick using heuristic algorithm. The complexity is O(2^n).
  *
  * @param limit maximum value of combinations
  * @param items object value table
  * @return solution
  */
 public static <T> Pack<T> geneticAlgorithm(Long limit, AbstractMap<T, Long> items) {
   return (Pack.needSearch(limit, items))
       ? new GeneticAlgorithm<T>(limit, items).call()
       : new Pack<T>(limit, new ArrayList<T>(items.keySet()));
 }
Esempio n. 6
0
 /**
  * Back-end to pick using DFS.
  *
  * @param limit maximum value of combinations
  * @param items object value table
  * @return solution
  */
 public static <T> Pack<T> depthFirstSearch(Long limit, AbstractMap<T, Long> items) {
   return (Pack.needSearch(limit, items))
       ? new DepthFirstSearch<T>(limit, items).call(0, new Pack<T>())
       : new Pack<T>(limit, new ArrayList<T>(items.keySet()));
 }
Esempio n. 7
0
 public static <T> Pack<T> binarySearch(Long limit, AbstractMap<T, Long> items) {
   return (Pack.needSearch(limit, items))
       ? new BinarySearch<T>(limit, items).call()
       : new Pack<T>(limit, new ArrayList<T>(items.keySet()));
 }