Esempio n. 1
0
  /**
   * Create a NEAT population.
   *
   * @param architecture The architecture string to use.
   * @param input The input count.
   * @param output The output count.
   * @return The population.
   */
  public MLMethod create(final String architecture, final int input, final int output) {

    if (input <= 0) {
      throw new EncogError("Must have at least one input for NEAT.");
    }

    if (output <= 0) {
      throw new EncogError("Must have at least one output for NEAT.");
    }

    final Map<String, String> args = ArchitectureParse.parseParams(architecture);
    final ParamsHolder holder = new ParamsHolder(args);

    final int populationSize = holder.getInt(MLMethodFactory.PROPERTY_POPULATION_SIZE, false, 1000);

    final int cycles =
        holder.getInt(MLMethodFactory.PROPERTY_CYCLES, false, NEATPopulation.DEFAULT_CYCLES);

    ActivationFunction af =
        this.factory.create(
            holder.getString(MLMethodFactory.PROPERTY_AF, false, MLActivationFactory.AF_SSIGMOID));

    NEATPopulation pop = new NEATPopulation(input, output, populationSize);
    pop.reset();
    pop.setActivationCycles(cycles);
    pop.setNEATActivationFunction(af);

    return pop;
  }
 /** {@inheritDoc} */
 @Override
 public void mutateWeight(
     final Random rnd, final NEATLinkGene linkGene, final double weightRange) {
   final double delta = rnd.nextGaussian() * this.sigma;
   double w = linkGene.getWeight() + delta;
   w = NEATPopulation.clampWeight(w, weightRange);
   linkGene.setWeight(w);
 }
 @Override
 public MLMethod decode(final Genome genome) {
   final NEATPopulation pop = (NEATPopulation) genome.getPopulation();
   final Substrate substrate = pop.getSubstrate();
   return decode(pop, substrate, genome);
 }