Esempio n. 1
0
 /**
  * Creates a relational expression which projects an array of expressions, and optionally
  * optimizes.
  *
  * <p>The result may not be a {@link ProjectRel}. If the projection is trivial, <code>child</code>
  * is returned directly; and future versions may return other formulations of expressions, such as
  * {@link CalcRel}.
  *
  * @param child input relational expression
  * @param exprs list of expressions for the input columns
  * @param fieldNames aliases of the expressions, or null to generate
  * @param optimize Whether to return <code>child</code> unchanged if the projections are trivial.
  */
 public static RelNode createProject(
     RelNode child, List<RexNode> exprs, List<String> fieldNames, boolean optimize) {
   final RelOptCluster cluster = child.getCluster();
   final RexProgram program =
       RexProgram.create(child.getRowType(), exprs, null, fieldNames, cluster.getRexBuilder());
   final List<RelCollation> collationList = program.getCollations(child.getCollationList());
   if (DeprecateProjectAndFilter) {
     return new CalcRel(
         cluster, child.getTraitSet(), child, program.getOutputRowType(), program, collationList);
   } else {
     final RelDataType rowType =
         RexUtil.createStructType(cluster.getTypeFactory(), exprs, fieldNames);
     if (optimize && RemoveTrivialProjectRule.isIdentity(exprs, rowType, child.getRowType())) {
       return child;
     }
     return new ProjectRel(
         cluster,
         cluster.traitSetOf(
             collationList.isEmpty() ? RelCollationImpl.EMPTY : collationList.get(0)),
         child,
         exprs,
         rowType,
         ProjectRelBase.Flags.Boxed);
   }
 }
Esempio n. 2
0
 /**
  * Creates a relational expression which projects an array of expressions, and optionally
  * optimizes.
  *
  * <p>The result may not be a {@link ProjectRel}. If the projection is trivial, <code>child</code>
  * is returned directly; and future versions may return other formulations of expressions, such as
  * {@link CalcRel}.
  *
  * @param child input relational expression
  * @param exprs list of expressions for the input columns
  * @param fieldNames aliases of the expressions, or null to generate
  * @param optimize Whether to return <code>child</code> unchanged if the projections are trivial.
  */
 public static RelNode createProject(
     RelNode child, List<RexNode> exprs, List<String> fieldNames, boolean optimize) {
   final RelOptCluster cluster = child.getCluster();
   final RexProgram program =
       RexProgram.create(child.getRowType(), exprs, null, fieldNames, cluster.getRexBuilder());
   final List<RelCollation> collationList = program.getCollations(child.getCollationList());
   if (DEPRECATE_PROJECT_AND_FILTER) {
     return new CalcRel(
         cluster, child.getTraitSet(), child, program.getOutputRowType(), program, collationList);
   } else {
     final RelDataType rowType =
         RexUtil.createStructType(
             cluster.getTypeFactory(),
             exprs,
             fieldNames == null
                 ? null
                 : SqlValidatorUtil.uniquify(fieldNames, SqlValidatorUtil.F_SUGGESTER));
     if (optimize && RemoveTrivialProjectRule.isIdentity(exprs, rowType, child.getRowType())) {
       return child;
     }
     return new ProjectRel(
         cluster,
         cluster.traitSetOf(
             collationList.isEmpty() ? RelCollationImpl.EMPTY : collationList.get(0)),
         child,
         exprs,
         rowType,
         ProjectRelBase.Flags.BOXED);
   }
 }
Esempio n. 3
0
 /**
  * Burrows into a synthetic record and returns the underlying relation which provides the field
  * called <code>fieldName</code>.
  */
 public JavaRel implementFieldAccess(JavaRelImplementor implementor, String fieldName) {
   if (!isBoxed()) {
     return implementor.implementFieldAccess((JavaRel) getChild(), fieldName);
   }
   RelDataType type = getRowType();
   int field = type.getFieldOrdinal(fieldName);
   RexLocalRef ref = program.getProjectList().get(field);
   final int index = ref.getIndex();
   return implementor.findRel((JavaRel) this, program.getExprList().get(index));
 }
Esempio n. 4
0
 /**
  * Creates a relational expression which permutes the output fields of a relational expression
  * according to a permutation.
  *
  * <p>Optimizations:
  *
  * <ul>
  *   <li>If the relational expression is a {@link CalcRel} or {@link ProjectRel} which is already
  *       acting as a permutation, combines the new permutation with the old;
  *   <li>If the permutation is the identity, returns the original relational expression.
  * </ul>
  *
  * <p>If a permutation is combined with its inverse, these optimizations would combine to remove
  * them both.
  *
  * @param rel Relational expression
  * @param permutation Permutation to apply to fields
  * @param fieldNames Field names; if null, or if a particular entry is null, the name of the
  *     permuted field is used
  * @return relational expression which permutes its input fields
  */
 public static RelNode permute(RelNode rel, Permutation permutation, List<String> fieldNames) {
   if (permutation.isIdentity()) {
     return rel;
   }
   if (rel instanceof CalcRel) {
     CalcRel calcRel = (CalcRel) rel;
     Permutation permutation1 = calcRel.getProgram().getPermutation();
     if (permutation1 != null) {
       Permutation permutation2 = permutation.product(permutation1);
       return permute(rel, permutation2, null);
     }
   }
   if (rel instanceof ProjectRel) {
     Permutation permutation1 = ((ProjectRel) rel).getPermutation();
     if (permutation1 != null) {
       Permutation permutation2 = permutation.product(permutation1);
       return permute(rel, permutation2, null);
     }
   }
   final List<RelDataType> outputTypeList = new ArrayList<RelDataType>();
   final List<String> outputNameList = new ArrayList<String>();
   final List<RexNode> exprList = new ArrayList<RexNode>();
   final List<RexLocalRef> projectRefList = new ArrayList<RexLocalRef>();
   final List<RelDataTypeField> fields = rel.getRowType().getFieldList();
   for (int i = 0; i < permutation.getTargetCount(); i++) {
     int target = permutation.getTarget(i);
     final RelDataTypeField targetField = fields.get(target);
     outputTypeList.add(targetField.getType());
     outputNameList.add(
         ((fieldNames == null) || (fieldNames.size() <= i) || (fieldNames.get(i) == null))
             ? targetField.getName()
             : fieldNames.get(i));
     exprList.add(rel.getCluster().getRexBuilder().makeInputRef(fields.get(i).getType(), i));
     final int source = permutation.getSource(i);
     projectRefList.add(new RexLocalRef(source, fields.get(source).getType()));
   }
   final RexProgram program =
       new RexProgram(
           rel.getRowType(),
           exprList,
           projectRefList,
           null,
           rel.getCluster().getTypeFactory().createStructType(outputTypeList, outputNameList));
   return new CalcRel(
       rel.getCluster(),
       rel.getTraitSet(),
       rel,
       program.getOutputRowType(),
       program,
       Collections.<RelCollation>emptyList());
 }
Esempio n. 5
0
 public IterCalcRel(
     RelOptCluster cluster, RelNode child, RexProgram program, int flags, String tag) {
   super(cluster, new RelTraitSet(CallingConvention.ITERATOR), child);
   this.flags = flags;
   this.program = program;
   this.rowType = program.getOutputRowType();
   this.tag = tag;
 }
Esempio n. 6
0
 /** Returns whether a {@link RexProgram} contains expressions which require decimal expansion. */
 public static boolean requiresDecimalExpansion(RexProgram program, boolean recurse) {
   final List<RexNode> exprList = program.getExprList();
   for (RexNode expr : exprList) {
     if (requiresDecimalExpansion(expr, recurse)) {
       return true;
     }
   }
   return false;
 }
Esempio n. 7
0
 /**
  * Creates a relational expression which filters according to a given condition, returning the
  * same fields as its input.
  *
  * @param child Child relational expression
  * @param condition Condition
  * @return Relational expression
  */
 public static RelNode createFilter(RelNode child, RexNode condition) {
   if (DeprecateProjectAndFilter) {
     final RelOptCluster cluster = child.getCluster();
     RexProgramBuilder builder =
         new RexProgramBuilder(child.getRowType(), cluster.getRexBuilder());
     builder.addIdentity();
     builder.addCondition(condition);
     final RexProgram program = builder.getProgram();
     return new CalcRel(
         cluster,
         child.getTraitSet(),
         child,
         program.getOutputRowType(),
         program,
         Collections.<RelCollation>emptyList());
   } else {
     return new FilterRel(child.getCluster(), child, condition);
   }
 }
Esempio n. 8
0
 /**
  * Determines whether it is possible to implement a set of expressions in Java.
  *
  * @param program Program to translate
  * @return whether all expressions in the program can be implemented
  */
 public boolean canTranslate(RelNode rel, RexProgram program) {
   RexToOJTranslator translator = newTranslator(rel);
   TranslationTester tester = new TranslationTester(translator, true);
   final List<RexNode> exprList = program.getExprList();
   for (RexNode expr : exprList) {
     if (!tester.canTranslate(expr)) {
       return false;
     }
   }
   return true;
 }
Esempio n. 9
0
 /**
  * Creates a relational expression which projects the output fields of a relational expression
  * according to a partial mapping.
  *
  * <p>A partial mapping is weaker than a permutation: every target has one source, but a source
  * may have 0, 1 or more than one targets. Usually the result will have fewer fields than the
  * source, unless some source fields are projected multiple times.
  *
  * <p>This method could optimize the result as {@link #permute} does, but does not at present.
  *
  * @param rel Relational expression
  * @param mapping Mapping from source fields to target fields. The mapping type must obey the
  *     constaints {@link MappingType#isMandatorySource()} and {@link
  *     MappingType#isSingleSource()}, as does {@link MappingType#InverseFunction}.
  * @param fieldNames Field names; if null, or if a particular entry is null, the name of the
  *     permuted field is used
  * @return relational expression which projects a subset of the input fields
  */
 public static RelNode projectMapping(RelNode rel, Mapping mapping, List<String> fieldNames) {
   assert mapping.getMappingType().isSingleSource();
   assert mapping.getMappingType().isMandatorySource();
   if (mapping.isIdentity()) {
     return rel;
   }
   final List<RelDataType> outputTypeList = new ArrayList<RelDataType>();
   final List<String> outputNameList = new ArrayList<String>();
   final List<RexNode> exprList = new ArrayList<RexNode>();
   final List<RexLocalRef> projectRefList = new ArrayList<RexLocalRef>();
   final List<RelDataTypeField> fields = rel.getRowType().getFieldList();
   for (int i = 0; i < fields.size(); i++) {
     final RelDataTypeField field = fields.get(i);
     exprList.add(rel.getCluster().getRexBuilder().makeInputRef(field.getType(), i));
   }
   for (int i = 0; i < mapping.getTargetCount(); i++) {
     int source = mapping.getSource(i);
     final RelDataTypeField sourceField = fields.get(source);
     outputTypeList.add(sourceField.getType());
     outputNameList.add(
         ((fieldNames == null) || (fieldNames.size() <= i) || (fieldNames.get(i) == null))
             ? sourceField.getName()
             : fieldNames.get(i));
     projectRefList.add(new RexLocalRef(source, sourceField.getType()));
   }
   final RexProgram program =
       new RexProgram(
           rel.getRowType(),
           exprList,
           projectRefList,
           null,
           rel.getCluster().getTypeFactory().createStructType(outputTypeList, outputNameList));
   return new CalcRel(
       rel.getCluster(),
       rel.getTraitSet(),
       rel,
       program.getOutputRowType(),
       program,
       Collections.<RelCollation>emptyList());
 }
        public void onMatch(RelOptRuleCall call) {
          CalcRel calc = (CalcRel) call.getRels()[0];
          RexProgram program = calc.getProgram();
          final List<RexNode> exprList = program.getExprList();

          // Form a list of expressions with sub-expressions fully
          // expanded.
          final List<RexNode> expandedExprList = new ArrayList<RexNode>(exprList.size());
          final RexShuttle shuttle =
              new RexShuttle() {
                public RexNode visitLocalRef(RexLocalRef localRef) {
                  return expandedExprList.get(localRef.getIndex());
                }
              };
          for (RexNode expr : exprList) {
            expandedExprList.add(expr.accept(shuttle));
          }
          if (reduceExpressions(calc, expandedExprList)) {
            final RexProgramBuilder builder =
                new RexProgramBuilder(
                    calc.getChild().getRowType(), calc.getCluster().getRexBuilder());
            List<RexLocalRef> list = new ArrayList<RexLocalRef>();
            for (RexNode expr : expandedExprList) {
              list.add(builder.registerInput(expr));
            }
            if (program.getCondition() != null) {
              final int conditionIndex = program.getCondition().getIndex();
              final RexNode newConditionExp = expandedExprList.get(conditionIndex);
              if (newConditionExp.isAlwaysTrue()) {
                // condition is always TRUE - drop it
              } else if ((newConditionExp instanceof RexLiteral)
                  || RexUtil.isNullLiteral(newConditionExp, true)) {
                // condition is always NULL or FALSE - replace calc
                // with empty
                call.transformTo(new EmptyRel(calc.getCluster(), calc.getRowType()));
                return;
              } else {
                builder.addCondition(list.get(conditionIndex));
              }
            }
            int k = 0;
            for (RexLocalRef projectExpr : program.getProjectList()) {
              final int index = projectExpr.getIndex();
              builder.addProject(
                  list.get(index).getIndex(),
                  program.getOutputRowType().getFieldList().get(k++).getName());
            }
            call.transformTo(
                new CalcRel(
                    calc.getCluster(),
                    calc.getTraits(),
                    calc.getChild(),
                    calc.getRowType(),
                    builder.getProgram(),
                    calc.getCollationList()));

            // New plan is absolutely better than old plan.
            call.getPlanner().setImportance(calc, 0.0);
          }
        }
Esempio n. 11
0
 public void explain(RelOptPlanWriter pw) {
   program.explainCalc(this, pw);
 }
Esempio n. 12
0
  /**
   * Generates code for a Java expression satisfying the {@link org.eigenbase.runtime.TupleIter}
   * interface. The generated code allocates a {@link org.eigenbase.runtime.CalcTupleIter} with a
   * dynamic {@link org.eigenbase.runtime.TupleIter#fetchNext()} method. If the "abort on error"
   * flag is false, or an error handling tag is specified, then fetchNext is written to handle row
   * errors.
   *
   * <p>Row errors are handled by wrapping expressions that can fail with a try/catch block. A
   * caught RuntimeException is then published to an "connection variable." In the event that errors
   * can overflow, an "error buffering" flag allows them to be posted again on the next iteration of
   * fetchNext.
   *
   * @param implementor an object that implements relations as Java code
   * @param rel the relation to be implemented
   * @param childExp the implemented child of the relation
   * @param varInputRow the Java variable to use for the input row
   * @param inputRowType the rel data type of the input row
   * @param outputRowType the rel data type of the output row
   * @param program the rex program to implemented by the relation
   * @param tag an error handling tag
   * @return a Java expression satisfying the TupleIter interface
   */
  public static Expression implementAbstractTupleIter(
      JavaRelImplementor implementor,
      JavaRel rel,
      Expression childExp,
      Variable varInputRow,
      final RelDataType inputRowType,
      final RelDataType outputRowType,
      RexProgram program,
      String tag) {
    MemberDeclarationList memberList = new MemberDeclarationList();

    // Perform error recovery if continuing on errors or if
    // an error handling tag has been specified
    boolean errorRecovery = !abortOnError || (tag != null);

    // Error buffering should not be enabled unless error recovery is
    assert !errorBuffering || errorRecovery;

    // Allow backwards compatibility until all Farrago extensions are
    // satisfied with the new error handling semantics. The new semantics
    // include:
    //   (1) cast input object to input row object outside of try block,
    //         should be fine, at least for base Farrago
    //   (2) maintain a columnIndex counter to better locate of error,
    //         at the cost of a few cycles
    //   (3) publish errors to the runtime context. FarragoRuntimeContext
    //         now supports this API
    boolean backwardsCompatible = true;
    if (tag != null) {
      backwardsCompatible = false;
    }

    RelDataTypeFactory typeFactory = implementor.getTypeFactory();
    OJClass outputRowClass = OJUtil.typeToOJClass(outputRowType, typeFactory);
    OJClass inputRowClass = OJUtil.typeToOJClass(inputRowType, typeFactory);

    Variable varOutputRow = implementor.newVariable();

    FieldDeclaration inputRowVarDecl =
        new FieldDeclaration(
            new ModifierList(ModifierList.PRIVATE),
            TypeName.forOJClass(inputRowClass),
            varInputRow.toString(),
            null);

    FieldDeclaration outputRowVarDecl =
        new FieldDeclaration(
            new ModifierList(ModifierList.PRIVATE),
            TypeName.forOJClass(outputRowClass),
            varOutputRow.toString(),
            new AllocationExpression(outputRowClass, new ExpressionList()));

    // The method body for fetchNext, a main target of code generation
    StatementList nextMethodBody = new StatementList();

    // First, post an error if it overflowed the previous time
    //     if (pendingError) {
    //         rc = handleRowError(...);
    //         if (rc instanceof NoDataReason) {
    //             return rc;
    //         }
    //         pendingError = false;
    //     }
    if (errorBuffering) {
      // add to next method body...
    }

    // Most of fetchNext falls within a while() block. The while block
    // allows us to try multiple input rows against a filter condition
    // before returning a single row.
    //     while (true) {
    //         Object varInputObj = inputIterator.fetchNext();
    //         if (varInputObj instanceof TupleIter.NoDataReason) {
    //             return varInputObj;
    //         }
    //         varInputRow = (InputRowClass) varInputObj;
    //         int columnIndex = 0;
    //         [calculation statements]
    //     }
    StatementList whileBody = new StatementList();

    Variable varInputObj = implementor.newVariable();

    whileBody.add(
        new VariableDeclaration(
            OJUtil.typeNameForClass(Object.class),
            varInputObj.toString(),
            new MethodCall(new FieldAccess("inputIterator"), "fetchNext", new ExpressionList())));

    StatementList ifNoDataReasonBody = new StatementList();

    whileBody.add(
        new IfStatement(
            new InstanceofExpression(
                varInputObj, OJUtil.typeNameForClass(TupleIter.NoDataReason.class)),
            ifNoDataReasonBody));

    ifNoDataReasonBody.add(new ReturnStatement(varInputObj));

    // Push up the row declaration for new error handling so that the
    // input row is available to the error handler
    if (!backwardsCompatible) {
      whileBody.add(assignInputRow(inputRowClass, varInputRow, varInputObj));
    }

    Variable varColumnIndex = null;
    if (errorRecovery && !backwardsCompatible) {
      // NOTE jvs 7-Oct-2006:  Declare varColumnIndex as a member
      // (rather than a local) in case in the future we want
      // to decompose complex expressions into helper methods.
      varColumnIndex = implementor.newVariable();
      FieldDeclaration varColumnIndexDecl =
          new FieldDeclaration(
              new ModifierList(ModifierList.PRIVATE),
              OJUtil.typeNameForClass(int.class),
              varColumnIndex.toString(),
              null);
      memberList.add(varColumnIndexDecl);
      whileBody.add(
          new ExpressionStatement(
              new AssignmentExpression(
                  varColumnIndex, AssignmentExpression.EQUALS, Literal.makeLiteral(0))));
    }

    // Calculator (projection, filtering) statements are later appended
    // to calcStmts. Typically, this target will be the while list itself.
    StatementList calcStmts;
    if (!errorRecovery) {
      calcStmts = whileBody;
    } else {
      // For error recovery, we wrap the calc statements
      // (e.g., everything but the code that reads rows from the
      // inputIterator) in a try/catch that publishes exceptions.

      calcStmts = new StatementList();

      // try { /* calcStmts */ }
      // catch(RuntimeException ex) {
      //     Object rc = connection.handleRowError(...);
      //     [buffer error if necessary]
      // }
      StatementList catchStmts = new StatementList();

      if (backwardsCompatible) {
        catchStmts.add(
            new ExpressionStatement(
                new MethodCall(
                    new MethodCall(
                        OJUtil.typeNameForClass(EigenbaseTrace.class), "getStatementTracer", null),
                    "log",
                    new ExpressionList(
                        new FieldAccess(OJUtil.typeNameForClass(Level.class), "WARNING"),
                        Literal.makeLiteral("java calc exception"),
                        new FieldAccess("ex")))));
      } else {
        Variable varRc = implementor.newVariable();
        ExpressionList handleRowErrorArgs =
            new ExpressionList(varInputRow, new FieldAccess("ex"), varColumnIndex);
        handleRowErrorArgs.add(Literal.makeLiteral(tag));
        catchStmts.add(
            new VariableDeclaration(
                OJUtil.typeNameForClass(Object.class),
                varRc.toString(),
                new MethodCall(
                    implementor.getConnectionVariable(), "handleRowError", handleRowErrorArgs)));

        // Buffer an error if it overflowed
        //     if (rc instanceof NoDataReason) {
        //         pendingError = true;
        //         [save error state]
        //         return rc;
        //     }
        if (errorBuffering) {
          // add to catch statements...
        }
      }

      CatchList catchList =
          new CatchList(
              new CatchBlock(
                  new Parameter(OJUtil.typeNameForClass(RuntimeException.class), "ex"),
                  catchStmts));

      TryStatement tryStmt = new TryStatement(calcStmts, catchList);

      whileBody.add(tryStmt);
    }

    if (backwardsCompatible) {
      calcStmts.add(assignInputRow(inputRowClass, varInputRow, varInputObj));
    }

    StatementList condBody;
    RexToOJTranslator translator = implementor.newStmtTranslator(rel, calcStmts, memberList);
    try {
      translator.pushProgram(program);
      if (program.getCondition() != null) {
        // TODO jvs 8-Oct-2006:  move condition to its own
        // method if big, as below for project exprs.
        condBody = new StatementList();
        RexNode rexIsTrue =
            rel.getCluster()
                .getRexBuilder()
                .makeCall(SqlStdOperatorTable.isTrueOperator, program.getCondition());
        Expression conditionExp = translator.translateRexNode(rexIsTrue);
        calcStmts.add(new IfStatement(conditionExp, condBody));
      } else {
        condBody = calcStmts;
      }

      RelDataTypeField[] fields = outputRowType.getFields();
      final List<RexLocalRef> projectRefList = program.getProjectList();
      int i = -1;
      for (RexLocalRef rhs : projectRefList) {

        // NOTE jvs 14-Sept-2006:  Put complicated project expressions
        // into their own method, otherwise a big select list can easily
        // blow the 64K Java limit on method bytecode size.  Make
        // methods private final in the hopes that they will get inlined
        // JIT.  For now we decide "complicated" based on the size of
        // the generated Java parse tree. A big enough select list of
        // simple expressions could still blow the limit, so we may need
        // to group them together, sub-divide, etc.

        StatementList projMethodBody = new StatementList();

        if (errorRecovery && !backwardsCompatible) {
          projMethodBody.add(
              new ExpressionStatement(
                  new UnaryExpression(varColumnIndex, UnaryExpression.POST_INCREMENT)));
        }
        ++i;

        RexToOJTranslator projTranslator = translator.push(projMethodBody);
        String javaFieldName = Util.toJavaId(fields[i].getName(), i);
        Expression lhs = new FieldAccess(varOutputRow, javaFieldName);
        projTranslator.translateAssignment(fields[i], lhs, rhs);

        int complexity = OJUtil.countParseTreeNodes(projMethodBody);

        // REVIEW: HCP 5/18/2011
        // The projMethod should be checked
        // for causing possible compiler errors caused by the use of
        // variables declared in other projMethods.  Also the
        // local declaration of variabled used by other proj methods
        // should also be checked.

        // Fixing for backswing integration 14270
        // TODO: check if abstracting this method body will cause
        // a compiler error
        if (true) {
          // No method needed; just append.
          condBody.addAll(projMethodBody);
          continue;
        }

        // Need a separate method.

        String projMethodName = "calc_" + varOutputRow.toString() + "_f_" + i;
        MemberDeclaration projMethodDecl =
            new MethodDeclaration(
                new ModifierList(ModifierList.PRIVATE | ModifierList.FINAL),
                TypeName.forOJClass(OJSystem.VOID),
                projMethodName,
                new ParameterList(),
                null,
                projMethodBody);
        memberList.add(projMethodDecl);
        condBody.add(new ExpressionStatement(new MethodCall(projMethodName, new ExpressionList())));
      }
    } finally {
      translator.popProgram(program);
    }

    condBody.add(new ReturnStatement(varOutputRow));

    WhileStatement whileStmt = new WhileStatement(Literal.makeLiteral(true), whileBody);

    nextMethodBody.add(whileStmt);

    MemberDeclaration fetchNextMethodDecl =
        new MethodDeclaration(
            new ModifierList(ModifierList.PUBLIC),
            OJUtil.typeNameForClass(Object.class),
            "fetchNext",
            new ParameterList(),
            null,
            nextMethodBody);

    // The restart() method should reset variables used to buffer errors
    //     pendingError = false
    if (errorBuffering) {
      // declare refinement of restart() and add to member list...
    }

    memberList.add(inputRowVarDecl);
    memberList.add(outputRowVarDecl);
    memberList.add(fetchNextMethodDecl);
    Expression newTupleIterExp =
        new AllocationExpression(
            OJUtil.typeNameForClass(CalcTupleIter.class), new ExpressionList(childExp), memberList);

    return newTupleIterExp;
  }
Esempio n. 13
0
 public IterCalcRel clone() {
   IterCalcRel clone =
       new IterCalcRel(getCluster(), getChild().clone(), program.copy(), getFlags(), tag);
   clone.inheritTraitsFrom(this);
   return clone;
 }
Esempio n. 14
0
 public RelOptCost computeSelfCost(RelOptPlanner planner) {
   double dRows = RelMetadataQuery.getRowCount(this);
   double dCpu = RelMetadataQuery.getRowCount(getChild()) * program.getExprCount();
   double dIo = 0;
   return planner.makeCost(dRows, dCpu, dIo);
 }
Esempio n. 15
0
 @Override
 public CalcRelBase copy(
     RelTraitSet traitSet, RelNode child, RexProgram program, List<RelCollation> collationList) {
   return new CalcRel(
       getCluster(), traitSet, child, program.getOutputRowType(), program, collationList);
 }