/** Variant of {@link #trimFields(RelNode, BitSet, Set)} for {@link TableFunctionRel}. */ public TrimResult trimFields( TableFunctionRel tabFun, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { final RelDataType rowType = tabFun.getRowType(); final int fieldCount = rowType.getFieldCount(); List<RelNode> newInputs = new ArrayList<RelNode>(); for (RelNode input : tabFun.getInputs()) { final int inputFieldCount = input.getRowType().getFieldCount(); BitSet inputFieldsUsed = Util.bitSetBetween(0, inputFieldCount); // Create input with trimmed columns. final Set<RelDataTypeField> inputExtraFields = Collections.emptySet(); TrimResult trimResult = trimChildRestore(tabFun, input, inputFieldsUsed, inputExtraFields); assert trimResult.right.isIdentity(); newInputs.add(trimResult.left); } TableFunctionRel newTabFun = tabFun; if (!tabFun.getInputs().equals(newInputs)) { newTabFun = tabFun.copy(tabFun.getTraitSet(), newInputs); } assert newTabFun.getClass() == tabFun.getClass(); // Always project all fields. Mapping mapping = Mappings.createIdentity(fieldCount); return new TrimResult(newTabFun, mapping); }
/** * Determines if a filter condition is a simple one and returns the parameters corresponding to * the simple filters. * * @param calcRel original CalcRel * @param filterExprs filter expression being analyzed * @param filterList returns the list of filter ordinals in the simple expression * @param literals returns the list of literals to be used in the simple comparisons * @param op returns the operator to be used in the simple comparison * @return true if the filter condition is simple */ private boolean isConditionSimple( CalcRel calcRel, RexNode filterExprs, List<Integer> filterList, List<RexLiteral> literals, List<CompOperatorEnum> op) { SargFactory sargFactory = new SargFactory(calcRel.getCluster().getRexBuilder()); SargRexAnalyzer rexAnalyzer = sargFactory.newRexAnalyzer(true); List<SargBinding> sargBindingList = rexAnalyzer.analyzeAll(filterExprs); // Currently, it's all or nothing. So, if there are filters rejected // by the analyzer, we can't process a subset using the reshape // exec stream if (rexAnalyzer.getNonSargFilterRexNode() != null) { return false; } List<RexInputRef> filterCols = new ArrayList<RexInputRef>(); List<RexNode> filterOperands = new ArrayList<RexNode>(); if (FennelRelUtil.extractSimplePredicates(sargBindingList, filterCols, filterOperands, op)) { for (RexInputRef filterCol : filterCols) { filterList.add(filterCol.getIndex()); } for (RexNode operand : filterOperands) { literals.add((RexLiteral) operand); } return true; } else { return false; } }
/** * Creates a relational expression which projects an array of expressions, and optionally * optimizes. * * <p>The result may not be a {@link ProjectRel}. If the projection is trivial, <code>child</code> * is returned directly; and future versions may return other formulations of expressions, such as * {@link CalcRel}. * * @param child input relational expression * @param exprs list of expressions for the input columns * @param fieldNames aliases of the expressions, or null to generate * @param optimize Whether to return <code>child</code> unchanged if the projections are trivial. */ public static RelNode createProject( RelNode child, List<RexNode> exprs, List<String> fieldNames, boolean optimize) { final RelOptCluster cluster = child.getCluster(); final RexProgram program = RexProgram.create(child.getRowType(), exprs, null, fieldNames, cluster.getRexBuilder()); final List<RelCollation> collationList = program.getCollations(child.getCollationList()); if (DEPRECATE_PROJECT_AND_FILTER) { return new CalcRel( cluster, child.getTraitSet(), child, program.getOutputRowType(), program, collationList); } else { final RelDataType rowType = RexUtil.createStructType( cluster.getTypeFactory(), exprs, fieldNames == null ? null : SqlValidatorUtil.uniquify(fieldNames, SqlValidatorUtil.F_SUGGESTER)); if (optimize && RemoveTrivialProjectRule.isIdentity(exprs, rowType, child.getRowType())) { return child; } return new ProjectRel( cluster, cluster.traitSetOf( collationList.isEmpty() ? RelCollationImpl.EMPTY : collationList.get(0)), child, exprs, rowType, ProjectRelBase.Flags.BOXED); } }
public RexNode parameter(ParameterExpression param) { int i = parameterList.indexOf(param); if (i >= 0) { return values.get(i); } throw new RuntimeException("unknown parameter " + param); }
/** * Creates a relational expression which projects an array of expressions, and optionally * optimizes. * * <p>The result may not be a {@link ProjectRel}. If the projection is trivial, <code>child</code> * is returned directly; and future versions may return other formulations of expressions, such as * {@link CalcRel}. * * @param child input relational expression * @param exprs list of expressions for the input columns * @param fieldNames aliases of the expressions, or null to generate * @param optimize Whether to return <code>child</code> unchanged if the projections are trivial. */ public static RelNode createProject( RelNode child, List<RexNode> exprs, List<String> fieldNames, boolean optimize) { final RelOptCluster cluster = child.getCluster(); final RexProgram program = RexProgram.create(child.getRowType(), exprs, null, fieldNames, cluster.getRexBuilder()); final List<RelCollation> collationList = program.getCollations(child.getCollationList()); if (DeprecateProjectAndFilter) { return new CalcRel( cluster, child.getTraitSet(), child, program.getOutputRowType(), program, collationList); } else { final RelDataType rowType = RexUtil.createStructType(cluster.getTypeFactory(), exprs, fieldNames); if (optimize && RemoveTrivialProjectRule.isIdentity(exprs, rowType, child.getRowType())) { return child; } return new ProjectRel( cluster, cluster.traitSetOf( collationList.isEmpty() ? RelCollationImpl.EMPTY : collationList.get(0)), child, exprs, rowType, ProjectRelBase.Flags.Boxed); } }
private void analyzeCall(RexCall call, Constancy callConstancy) { parentCallTypeStack.add(call.getOperator()); // visit operands, pushing their states onto stack super.visitCall(call); // look for NON_CONSTANT operands int nOperands = call.getOperands().length; List<Constancy> operandStack = stack.subList(stack.size() - nOperands, stack.size()); for (Constancy operandConstancy : operandStack) { if (operandConstancy == Constancy.NON_CONSTANT) { callConstancy = Constancy.NON_CONSTANT; } } // Even if all operands are constant, the call itself may // be non-deterministic. if (!call.getOperator().isDeterministic()) { callConstancy = Constancy.NON_CONSTANT; } else if (call.getOperator().isDynamicFunction()) { // We can reduce the call to a constant, but we can't // cache the plan if the function is dynamic preparingStmt.disableStatementCaching(); } // Row operator itself can't be reduced to a literal, but if // the operands are constants, we still want to reduce those if ((callConstancy == Constancy.REDUCIBLE_CONSTANT) && (call.getOperator() instanceof SqlRowOperator)) { callConstancy = Constancy.NON_CONSTANT; } if (callConstancy == Constancy.NON_CONSTANT) { // any REDUCIBLE_CONSTANT children are now known to be maximal // reducible subtrees, so they can be added to the result // list for (int iOperand = 0; iOperand < nOperands; ++iOperand) { Constancy constancy = operandStack.get(iOperand); if (constancy == Constancy.REDUCIBLE_CONSTANT) { addResult(call.getOperands()[iOperand]); } } // if this cast expression can't be reduced to a literal, // then see if we can remove the cast if (call.getOperator() == SqlStdOperatorTable.castFunc) { reduceCasts(call); } } // pop operands off of the stack operandStack.clear(); // pop this parent call operator off the stack parentCallTypeStack.remove(parentCallTypeStack.size() - 1); // push constancy result for this call onto stack stack.add(callConstancy); }
/** * Applies a visitor to a list of expressions and, if specified, a single expression. * * @param visitor Visitor * @param exprs List of expressions * @param expr Single expression, may be null */ public static void apply(RexVisitor<Void> visitor, List<? extends RexNode> exprs, RexNode expr) { for (int i = 0; i < exprs.size(); i++) { exprs.get(i).accept(visitor); } if (expr != null) { expr.accept(visitor); } }
public List<RexNode> toRexList(BlockExpression expression) { final List<Expression> simpleList = simpleList(expression); final List<RexNode> list = new ArrayList<RexNode>(); for (Expression expression1 : simpleList) { list.add(toRex(expression1)); } return list; }
/** * Applies a mapping to a list of field collations. * * @param mapping Mapping * @param fieldCollations Field collations * @return collations with mapping applied */ public static List<RelFieldCollation> apply( Mapping mapping, List<RelFieldCollation> fieldCollations) { final List<RelFieldCollation> newFieldCollations = new ArrayList<RelFieldCollation>(fieldCollations.size()); for (RelFieldCollation fieldCollation : fieldCollations) { newFieldCollations.add(apply(mapping, fieldCollation)); } return newFieldCollations; }
/** * Variant of {@link #trimFields(RelNode, BitSet, Set)} for {@link SetOpRel} (including UNION and * UNION ALL). */ public TrimResult trimFields( SetOpRel setOp, BitSet fieldsUsed, Set<RelDataTypeField> extraFields) { final RelDataType rowType = setOp.getRowType(); final int fieldCount = rowType.getFieldCount(); int changeCount = 0; // Fennel abhors an empty row type, so pretend that the parent rel // wants the last field. (The last field is the least likely to be a // system field.) if (fieldsUsed.isEmpty()) { fieldsUsed.set(rowType.getFieldCount() - 1); } // Compute the desired field mapping. Give the consumer the fields they // want, in the order that they appear in the bitset. final Mapping mapping = createMapping(fieldsUsed, fieldCount); // Create input with trimmed columns. final List<RelNode> newInputs = new ArrayList<RelNode>(); for (RelNode input : setOp.getInputs()) { TrimResult trimResult = trimChild(setOp, input, fieldsUsed, extraFields); RelNode newInput = trimResult.left; final Mapping inputMapping = trimResult.right; // We want "mapping", the input gave us "inputMapping", compute // "remaining" mapping. // | | | // |---------------- mapping ---------->| // |-- inputMapping -->| | // | |-- remaining -->| // // For instance, suppose we have columns [a, b, c, d], // the consumer asked for mapping = [b, d], // and the transformed input has columns inputMapping = [d, a, b]. // remaining will permute [b, d] to [d, a, b]. Mapping remaining = Mappings.divide(mapping, inputMapping); // Create a projection; does nothing if remaining is identity. newInput = CalcRel.projectMapping(newInput, remaining, null); if (input != newInput) { ++changeCount; } newInputs.add(newInput); } // If the input is unchanged, and we need to project all columns, // there's to do. if (changeCount == 0 && mapping.isIdentity()) { return new TrimResult(setOp, mapping); } RelNode newSetOp = setOp.copy(setOp.getTraitSet(), newInputs); return new TrimResult(newSetOp, mapping); }
public void onMatch(RelOptRuleCall call) { CalcRel calc = (CalcRel) call.getRels()[0]; RexProgram program = calc.getProgram(); final List<RexNode> exprList = program.getExprList(); // Form a list of expressions with sub-expressions fully // expanded. final List<RexNode> expandedExprList = new ArrayList<RexNode>(exprList.size()); final RexShuttle shuttle = new RexShuttle() { public RexNode visitLocalRef(RexLocalRef localRef) { return expandedExprList.get(localRef.getIndex()); } }; for (RexNode expr : exprList) { expandedExprList.add(expr.accept(shuttle)); } if (reduceExpressions(calc, expandedExprList)) { final RexProgramBuilder builder = new RexProgramBuilder( calc.getChild().getRowType(), calc.getCluster().getRexBuilder()); List<RexLocalRef> list = new ArrayList<RexLocalRef>(); for (RexNode expr : expandedExprList) { list.add(builder.registerInput(expr)); } if (program.getCondition() != null) { final int conditionIndex = program.getCondition().getIndex(); final RexNode newConditionExp = expandedExprList.get(conditionIndex); if (newConditionExp.isAlwaysTrue()) { // condition is always TRUE - drop it } else if ((newConditionExp instanceof RexLiteral) || RexUtil.isNullLiteral(newConditionExp, true)) { // condition is always NULL or FALSE - replace calc // with empty call.transformTo(new EmptyRel(calc.getCluster(), calc.getRowType())); return; } else { builder.addCondition(list.get(conditionIndex)); } } int k = 0; for (RexLocalRef projectExpr : program.getProjectList()) { final int index = projectExpr.getIndex(); builder.addProject( list.get(index).getIndex(), program.getOutputRowType().getFieldList().get(k++).getName()); } call.transformTo( new CalcRel( calc.getCluster(), calc.getTraits(), calc.getChild(), calc.getRowType(), builder.getProgram(), calc.getCollationList())); // New plan is absolutely better than old plan. call.getPlanner().setImportance(calc, 0.0); } }
/** * Creates an OR expression from a list of RexNodes * * @param rexList list of RexNodes * @return OR'd expression */ public static RexNode orRexNodeList(RexBuilder rexBuilder, List<RexNode> rexList) { if (rexList.isEmpty()) { return null; } RexNode orExpr = rexList.get(rexList.size() - 1); for (int i = rexList.size() - 2; i >= 0; i--) { orExpr = rexBuilder.makeCall(SqlStdOperatorTable.orOperator, rexList.get(i), orExpr); } return orExpr; }
/** Splits a condition into conjunctions that do or do not intersect with a given bit set. */ static void split( RexNode condition, BitSet bitSet, List<RexNode> intersecting, List<RexNode> nonIntersecting) { for (RexNode node : RelOptUtil.conjunctions(condition)) { BitSet inputBitSet = RelOptUtil.InputFinder.bits(node); if (bitSet.intersects(inputBitSet)) { intersecting.add(node); } else { nonIntersecting.add(node); } } }
public void onMatch(RelOptRuleCall call) { JoinRel origJoinRel = (JoinRel) call.rels[0]; RelNode left = call.rels[1]; RelNode right = call.rels[2]; // combine the children MultiJoinRel inputs into an array of inputs // for the new MultiJoinRel List<BitSet> projFieldsList = new ArrayList<BitSet>(); List<int[]> joinFieldRefCountsList = new ArrayList<int[]>(); RelNode[] newInputs = combineInputs(origJoinRel, left, right, projFieldsList, joinFieldRefCountsList); // combine the outer join information from the left and right // inputs, and include the outer join information from the current // join, if it's a left/right outer join RexNode[] newOuterJoinConds = new RexNode[newInputs.length]; JoinRelType[] joinTypes = new JoinRelType[newInputs.length]; combineOuterJoins(origJoinRel, newInputs, left, right, newOuterJoinConds, joinTypes); // pull up the join filters from the children MultiJoinRels and // combine them with the join filter associated with this JoinRel to // form the join filter for the new MultiJoinRel RexNode newJoinFilter = combineJoinFilters(origJoinRel, left, right); // add on the join field reference counts for the join condition // associated with this JoinRel Map<Integer, int[]> newJoinFieldRefCountsMap = new HashMap<Integer, int[]>(); addOnJoinFieldRefCounts( newInputs, origJoinRel.getRowType().getFieldCount(), origJoinRel.getCondition(), joinFieldRefCountsList, newJoinFieldRefCountsMap); RexNode newPostJoinFilter = combinePostJoinFilters(origJoinRel, left, right); RelNode multiJoin = new MultiJoinRel( origJoinRel.getCluster(), newInputs, newJoinFilter, origJoinRel.getRowType(), (origJoinRel.getJoinType() == JoinRelType.FULL), newOuterJoinConds, joinTypes, projFieldsList.toArray(new BitSet[projFieldsList.size()]), newJoinFieldRefCountsMap, newPostJoinFilter); call.transformTo(multiJoin); }
public List<SqlOperator> lookupOperatorOverloads( SqlIdentifier opName, SqlFunctionCategory category, SqlSyntax syntax) { if (syntax != SqlSyntax.Function) { return Collections.emptyList(); } // FIXME: ignoring prefix of opName String name = opName.names[opName.names.length - 1]; List<TableFunction> tableFunctions = rootSchema.getTableFunctions(name); if (tableFunctions.isEmpty()) { return Collections.emptyList(); } return toOps(name, tableFunctions); }
/** * Derives the list of column names suitable for NATURAL JOIN. These are the columns that occur * exactly once on each side of the join. * * @param leftRowType Row type of left input to the join * @param rightRowType Row type of right input to the join * @return List of columns that occur once on each side */ public static List<String> deriveNaturalJoinColumnList( RelDataType leftRowType, RelDataType rightRowType) { List<String> naturalColumnNames = new ArrayList<String>(); final List<String> leftNames = leftRowType.getFieldNames(); final List<String> rightNames = rightRowType.getFieldNames(); for (String name : leftNames) { if ((Collections.frequency(leftNames, name) == 1) && (Collections.frequency(rightNames, name) == 1)) { naturalColumnNames.add(name); } } return naturalColumnNames; }
/** * Creates an AND expression from a list of RexNodes * * @param rexList list of RexNodes * @return AND'd expression */ public static RexNode andRexNodeList(RexBuilder rexBuilder, List<RexNode> rexList) { if (rexList.isEmpty()) { return null; } // create a right-deep tree to allow short-circuiting during // expression evaluation RexNode andExpr = rexList.get(rexList.size() - 1); for (int i = rexList.size() - 2; i >= 0; i--) { andExpr = rexBuilder.makeCall(SqlStdOperatorTable.andOperator, rexList.get(i), andExpr); } return andExpr; }
/** * Locates expressions that can be reduced to literals or converted to expressions with redundant * casts removed. * * @param preparingStmt the statement containing the expressions * @param exps list of candidate expressions to be examined for reduction * @param constExps returns the list of expressions that can be constant reduced * @param addCasts indicator for each expression that can be constant reduced, whether a cast of * the resulting reduced expression is potentially necessary * @param removableCasts returns the list of cast expressions where the cast can be removed */ private static void findReducibleExps( FarragoSessionPreparingStmt preparingStmt, List<RexNode> exps, List<RexNode> constExps, List<Boolean> addCasts, List<RexNode> removableCasts) { ReducibleExprLocator gardener = new ReducibleExprLocator(preparingStmt, constExps, addCasts, removableCasts); for (RexNode exp : exps) { gardener.analyze(exp); } assert (constExps.size() == addCasts.size()); }
/** * Reconstructs a rex predicate from a list of SargBindings which are AND'ed together. * * @param sargBindingList list of SargBindings to be converted. * @return the rex predicate reconstructed from the list of SargBindings. */ public RexNode getSargBindingListToRexNode(List<SargBinding> sargBindingList) { if (sargBindingList.isEmpty()) { return null; } RexNode newAndNode = sarg2RexMap.get(sargBindingList.get(0).getExpr()); for (int i = 1; i < sargBindingList.size(); i++) { RexNode nextNode = sarg2RexMap.get(sargBindingList.get(i).getExpr()); newAndNode = factory.getRexBuilder().makeCall(SqlStdOperatorTable.andOperator, newAndNode, nextNode); } return newAndNode; }
/** * Resolves a multi-part identifier such as "SCHEMA.EMP.EMPNO" to a namespace. The returned * namespace may represent a schema, table, column, etc. * * @pre names.size() > 0 * @post return != null */ public static SqlValidatorNamespace lookup(SqlValidatorScope scope, List<String> names) { Util.pre(names.size() > 0, "names.size() > 0"); SqlValidatorNamespace namespace = null; for (int i = 0; i < names.size(); i++) { String name = names.get(i); if (i == 0) { namespace = scope.resolve(name, null, null); } else { namespace = namespace.lookupChild(name); } } Util.permAssert(namespace != null, "post: namespace != null"); return namespace; }
/** * Combines the inputs into a JoinRel into an array of inputs. * * @param join original join * @param left left input into join * @param right right input into join * @param projFieldsList returns a list of the new combined projection fields * @param joinFieldRefCountsList returns a list of the new combined join field reference counts * @return combined left and right inputs in an array */ private RelNode[] combineInputs( JoinRel join, RelNode left, RelNode right, List<BitSet> projFieldsList, List<int[]> joinFieldRefCountsList) { // leave the null generating sides of an outer join intact; don't // pull up those children inputs into the array we're constructing int nInputs; int nInputsOnLeft; MultiJoinRel leftMultiJoin = null; JoinRelType joinType = join.getJoinType(); boolean combineLeft = canCombine(left, joinType.generatesNullsOnLeft()); if (combineLeft) { leftMultiJoin = (MultiJoinRel) left; nInputs = left.getInputs().length; nInputsOnLeft = nInputs; } else { nInputs = 1; nInputsOnLeft = 1; } MultiJoinRel rightMultiJoin = null; boolean combineRight = canCombine(right, joinType.generatesNullsOnRight()); if (combineRight) { rightMultiJoin = (MultiJoinRel) right; nInputs += right.getInputs().length; } else { nInputs += 1; } RelNode[] newInputs = new RelNode[nInputs]; int i = 0; if (combineLeft) { for (; i < left.getInputs().length; i++) { newInputs[i] = leftMultiJoin.getInput(i); projFieldsList.add(((MultiJoinRel) left).getProjFields()[i]); joinFieldRefCountsList.add(((MultiJoinRel) left).getJoinFieldRefCountsMap().get(i)); } } else { newInputs[0] = left; i = 1; projFieldsList.add(null); joinFieldRefCountsList.add(new int[left.getRowType().getFieldCount()]); } if (combineRight) { for (; i < nInputs; i++) { newInputs[i] = rightMultiJoin.getInput(i - nInputsOnLeft); projFieldsList.add(((MultiJoinRel) right).getProjFields()[i - nInputsOnLeft]); joinFieldRefCountsList.add( ((MultiJoinRel) right).getJoinFieldRefCountsMap().get(i - nInputsOnLeft)); } } else { newInputs[i] = right; projFieldsList.add(null); joinFieldRefCountsList.add(new int[right.getRowType().getFieldCount()]); } return newInputs; }
// implement RelOptRule public void onMatch(RelOptRuleCall call) { ProjectRel origProj = call.rel(0); JoinRel joinRel = call.rel(1); // locate all fields referenced in the projection and join condition; // determine which inputs are referenced in the projection and // join condition; if all fields are being referenced and there are no // special expressions, no point in proceeding any further PushProjector pushProject = new PushProjector(origProj, joinRel.getCondition(), joinRel, preserveExprCondition); if (pushProject.locateAllRefs()) { return; } // create left and right projections, projecting only those // fields referenced on each side RelNode leftProjRel = pushProject.createProjectRefsAndExprs(joinRel.getLeft(), true, false); RelNode rightProjRel = pushProject.createProjectRefsAndExprs(joinRel.getRight(), true, true); // convert the join condition to reference the projected columns RexNode newJoinFilter = null; int[] adjustments = pushProject.getAdjustments(); if (joinRel.getCondition() != null) { List<RelDataTypeField> projJoinFieldList = new ArrayList<RelDataTypeField>(); projJoinFieldList.addAll(joinRel.getSystemFieldList()); projJoinFieldList.addAll(leftProjRel.getRowType().getFieldList()); projJoinFieldList.addAll(rightProjRel.getRowType().getFieldList()); newJoinFilter = pushProject.convertRefsAndExprs(joinRel.getCondition(), projJoinFieldList, adjustments); } // create a new joinrel with the projected children JoinRel newJoinRel = new JoinRel( joinRel.getCluster(), leftProjRel, rightProjRel, newJoinFilter, joinRel.getJoinType(), Collections.<String>emptySet(), joinRel.isSemiJoinDone(), joinRel.getSystemFieldList()); // put the original project on top of the join, converting it to // reference the modified projection list ProjectRel topProject = pushProject.createNewProject(newJoinRel, adjustments); call.transformTo(topProject); }
public static void getSchemaObjectMonikers( SqlValidatorCatalogReader catalogReader, List<String> names, List<SqlMoniker> hints) { // Assume that the last name is 'dummy' or similar. List<String> subNames = Util.skipLast(names); hints.addAll(catalogReader.getAllSchemaObjectNames(subNames)); // If the name has length 0, try prepending the name of the default // schema. So, the empty name would yield a list of tables in the // default schema, as well as a list of schemas from the above code. if (subNames.size() == 0) { hints.addAll( catalogReader.getAllSchemaObjectNames( Collections.singletonList(catalogReader.getSchemaName()))); } }
/** * Returns a relational expression which has the same fields as the underlying expression, but the * fields have different names. * * @param rel Relational expression * @param fieldNames Field names * @return Renamed relational expression */ public static RelNode createRename(RelNode rel, List<String> fieldNames) { final List<RelDataTypeField> fields = rel.getRowType().getFieldList(); assert fieldNames.size() == fields.size(); final List<Pair<RexNode, String>> refs = new AbstractList<Pair<RexNode, String>>() { public int size() { return fields.size(); } public Pair<RexNode, String> get(int index) { return RexInputRef.of2(index, fields); } }; return createProject(rel, refs, true); }
public void analyze(RexNode exp) { assert (stack.isEmpty()); exp.accept(this); // Deal with top of stack assert (stack.size() == 1); assert (parentCallTypeStack.isEmpty()); Constancy rootConstancy = stack.get(0); if (rootConstancy == Constancy.REDUCIBLE_CONSTANT) { // The entire subtree was constant, so add it to the result. addResult(exp); } stack.clear(); }
public static RelDataType createTypeFromProjection( RelDataType type, List<String> columnNameList, RelDataTypeFactory typeFactory, boolean caseSensitive) { // If the names in columnNameList and type have case-sensitive differences, // the resulting type will use those from type. These are presumably more // canonical. final List<RelDataTypeField> fields = new ArrayList<RelDataTypeField>(columnNameList.size()); for (String name : columnNameList) { RelDataTypeField field = type.getField(name, caseSensitive); fields.add(type.getFieldList().get(field.getIndex())); } return typeFactory.createStructType(fields); }
public RexNode visitCall(RexCall call) { List<RexNode> normalizedOperands = new ArrayList<RexNode>(); int diffCount = 0; for (RexNode operand : call.getOperands()) { operand.accept(this); final RexNode normalizedOperand = lookup(operand); normalizedOperands.add(normalizedOperand); if (normalizedOperand != operand) { ++diffCount; } } if (diffCount > 0) { call = call.clone(call.getType(), normalizedOperands); } return register(call); }
/** * Reconstructs a rex predicate from the non-sargable filter predicates which are AND'ed together. * * @return the rex predicate reconstructed from the non-sargable predicates. */ public RexNode getNonSargFilterRexNode() { if (nonSargFilterList.isEmpty()) { return null; } RexNode newAndNode = nonSargFilterList.get(0); for (int i = 1; i < nonSargFilterList.size(); i++) { newAndNode = factory .getRexBuilder() .makeCall(SqlStdOperatorTable.andOperator, newAndNode, nonSargFilterList.get(i)); } return newAndNode; }
public RelOptTable getTableForMember(List<String> names) { final SqlValidatorTable table = catalogReader.getTable(names); final RelDataType rowType = table.getRowType(); final List<RelCollation> collationList = deduceMonotonicity(table); if (names.size() < 3) { String[] newNames2 = {"CATALOG", "SALES", ""}; List<String> newNames = new ArrayList<String>(); int i = 0; while (newNames.size() < newNames2.length) { newNames.add(i, newNames2[i]); ++i; } names = newNames; } return createColumnSet(table, names, rowType, collationList); }
/** @return true if all tuples match rowType; otherwise, assert on mismatch */ private boolean assertRowType() { for (List<RexLiteral> tuple : tuples) { assert tuple.size() == rowType.getFieldCount(); for (Pair<RexLiteral, RelDataTypeField> pair : Pair.zip(tuple, rowType.getFieldList())) { RexLiteral literal = pair.left; RelDataType fieldType = pair.right.getType(); // TODO jvs 19-Feb-2006: strengthen this a bit. For example, // overflow, rounding, and padding/truncation must already have // been dealt with. if (!RexLiteral.isNullLiteral(literal)) { assert (SqlTypeUtil.canAssignFrom(fieldType, literal.getType())); } } } return true; }