private void initialize(final LGraph graph) { layeredGraph = graph; int layerCount = graph.getLayers().size(); bestNodeOrder = new LNode[layerCount][]; currentNodeOrder = new LNode[layerCount][]; originalNodeOrder = new LNode[layerCount][]; ListIterator<Layer> layerIter = graph.getLayers().listIterator(); while (layerIter.hasNext()) { Layer layer = layerIter.next(); int layerNodeCount = layer.getNodes().size(); assert layerNodeCount > 0; int layerIndex = layerIter.previousIndex(); bestNodeOrder[layerIndex] = new LNode[layerNodeCount]; currentNodeOrder[layerIndex] = new LNode[layerNodeCount]; originalNodeOrder[layerIndex] = new LNode[layerNodeCount]; ListIterator<LNode> nodeIter = layer.getNodes().listIterator(); int id = 0; while (nodeIter.hasNext()) { LNode node = nodeIter.next(); node.id = id++; currentNodeOrder[layerIndex][nodeIter.previousIndex()] = node; bestNodeOrder[layerIndex][nodeIter.previousIndex()] = node; originalNodeOrder[layerIndex][nodeIter.previousIndex()] = node; } } crossingCounter = new AllCrossingsCounter(currentNodeOrder); if (greedySwitchType.useHyperedgeCounter()) { crossingCounter.useHyperedgeCounter(); } }
/** * Creates an unbalanced placement for the sorted linear segments. * * @param layeredGraph the layered graph to create an unbalanced placement for. */ private void createUnbalancedPlacement(final LGraph layeredGraph) { // How many nodes are currently placed in each layer int[] nodeCount = new int[layeredGraph.getLayers().size()]; // The type of the node most recently placed in a given layer NodeType[] recentNodeType = new NodeType[layeredGraph.getLayers().size()]; // Iterate through the linear segments (in proper order!) and place them for (LinearSegment segment : linearSegments) { // Determine the uppermost placement for the linear segment double uppermostPlace = 0.0f; for (LNode node : segment.nodes) { NodeType nodeType = node.getType(); int layerIndex = node.getLayer().getIndex(); nodeCount[layerIndex]++; // Calculate how much space to leave between the linear segment and the last // node of the given layer float spacing = spacings.edgeEdgeSpacing * spacings.inLayerSpacingFactor; if (nodeCount[layerIndex] > 0) { if (recentNodeType[layerIndex] != null) { spacing = spacings.getVerticalSpacing(recentNodeType[layerIndex], nodeType); } } uppermostPlace = Math.max(uppermostPlace, node.getLayer().getSize().y + spacing); } // Apply the uppermost placement to all elements for (LNode node : segment.nodes) { // Set the node position node.getPosition().y = uppermostPlace + node.getMargin().top; // Adjust layer size Layer layer = node.getLayer(); layer.getSize().y = uppermostPlace + node.getMargin().top + node.getSize().y + node.getMargin().bottom; recentNodeType[layer.getIndex()] = node.getType(); } } }
private void setAsGraph(final LNode[][] nodeOrder) { ListIterator<Layer> layerIter = layeredGraph.getLayers().listIterator(); while (layerIter.hasNext()) { Layer layer = layerIter.next(); LNode[] nodes = nodeOrder[layerIter.previousIndex()]; ListIterator<LNode> nodeIter = layer.getNodes().listIterator(); while (nodeIter.hasNext()) { nodeIter.next(); nodeIter.set(nodes[nodeIter.previousIndex()]); } } }
/** {@inheritDoc} */ public void process(final LGraph graph, final IElkProgressMonitor progressMonitor) { progressMonitor.begin("Greedy switch crossing reduction", 1); greedySwitchType = graph.getProperty(Properties.GREEDY_SWITCH_TYPE); int layerCount = graph.getLayers().size(); if (layerCount < 2 || greedySwitchType == GreedySwitchType.OFF) { progressMonitor.done(); return; } initialize(graph); if (greedySwitchType.useBestOfUpOrDown()) { compareSweepingUpwardOrDownward(); } else { sweepOneSidedOrTwoSided(); } setAsGraph(bestNodeOrder); progressMonitor.done(); }