Esempio n. 1
0
  private void init() {

    if (rng == null) rng = new MersenneTwister(123);

    MultiDimensionalSet<String, String> binaryProductions = MultiDimensionalSet.hashSet();
    if (simplifiedModel) {
      binaryProductions.add("", "");
    } else {
      // TODO
      // figure out what binary productions we have in these trees
      // Note: the current sentiment training data does not actually
      // have any constituent labels
      throw new UnsupportedOperationException("Not yet implemented");
    }

    Set<String> unaryProductions = new HashSet<>();

    if (simplifiedModel) {
      unaryProductions.add("");
    } else {
      // TODO
      // figure out what unary productions we have in these trees (preterminals only, after the
      // collapsing)
      throw new UnsupportedOperationException("Not yet implemented");
    }

    identity = FloatMatrix.eye(numHidden);

    binaryTransform = MultiDimensionalMap.newTreeBackedMap();
    binaryFloatTensors = MultiDimensionalMap.newTreeBackedMap();
    binaryClassification = MultiDimensionalMap.newTreeBackedMap();

    // When making a flat model (no semantic untying) the
    // basicCategory function will return the same basic category for
    // all labels, so all entries will map to the same matrix
    for (Pair<String, String> binary : binaryProductions) {
      String left = basicCategory(binary.getFirst());
      String right = basicCategory(binary.getSecond());
      if (binaryTransform.contains(left, right)) {
        continue;
      }

      binaryTransform.put(left, right, randomTransformMatrix());
      if (useFloatTensors) {
        binaryFloatTensors.put(left, right, randomBinaryFloatTensor());
      }

      if (!combineClassification) {
        binaryClassification.put(left, right, randomClassificationMatrix());
      }
    }

    numBinaryMatrices = binaryTransform.size();
    binaryTransformSize = numHidden * (2 * numHidden + 1);

    if (useFloatTensors) {
      binaryFloatTensorSize = numHidden * numHidden * numHidden * 4;
    } else {
      binaryFloatTensorSize = 0;
    }

    binaryClassificationSize = (combineClassification) ? 0 : numOuts * (numHidden + 1);

    unaryClassification = new TreeMap<>();

    // When making a flat model (no semantic untying) the
    // basicCategory function will return the same basic category for
    // all labels, so all entries will map to the same matrix

    for (String unary : unaryProductions) {
      unary = basicCategory(unary);
      if (unaryClassification.containsKey(unary)) {
        continue;
      }
      unaryClassification.put(unary, randomClassificationMatrix());
    }

    binaryClassificationSize = (combineClassification) ? 0 : numOuts * (numHidden + 1);

    numUnaryMatrices = unaryClassification.size();
    unaryClassificationSize = numOuts * (numHidden + 1);

    featureVectors.put(UNKNOWN_FEATURE, randomWordVector());
    numUnaryMatrices = unaryClassification.size();
    unaryClassificationSize = numOuts * (numHidden + 1);
    classWeights = new HashMap<>();
  }
Esempio n. 2
0
  public FloatMatrix getValueGradient(int iterations) {

    // We use TreeMap for each of these so that they stay in a
    // canonical sorted order
    // TODO: factor out the initialization routines
    // binaryTD stands for Transform Derivatives
    final MultiDimensionalMap<String, String, FloatMatrix> binaryTD =
        MultiDimensionalMap.newTreeBackedMap();
    // the derivatives of the FloatTensors for the binary nodes
    final MultiDimensionalMap<String, String, FloatTensor> binaryFloatTensorTD =
        MultiDimensionalMap.newTreeBackedMap();
    // binaryCD stands for Classification Derivatives
    final MultiDimensionalMap<String, String, FloatMatrix> binaryCD =
        MultiDimensionalMap.newTreeBackedMap();

    // unaryCD stands for Classification Derivatives
    final Map<String, FloatMatrix> unaryCD = new TreeMap<>();

    // word vector derivatives
    final Map<String, FloatMatrix> wordVectorD = new TreeMap<>();

    for (MultiDimensionalMap.Entry<String, String, FloatMatrix> entry :
        binaryTransform.entrySet()) {
      int numRows = entry.getValue().rows;
      int numCols = entry.getValue().columns;

      binaryTD.put(entry.getFirstKey(), entry.getSecondKey(), new FloatMatrix(numRows, numCols));
    }

    if (!combineClassification) {
      for (MultiDimensionalMap.Entry<String, String, FloatMatrix> entry :
          binaryClassification.entrySet()) {
        int numRows = entry.getValue().rows;
        int numCols = entry.getValue().columns;

        binaryCD.put(entry.getFirstKey(), entry.getSecondKey(), new FloatMatrix(numRows, numCols));
      }
    }

    if (useFloatTensors) {
      for (MultiDimensionalMap.Entry<String, String, FloatTensor> entry :
          binaryFloatTensors.entrySet()) {
        int numRows = entry.getValue().rows();
        int numCols = entry.getValue().columns;
        int numSlices = entry.getValue().slices();

        binaryFloatTensorTD.put(
            entry.getFirstKey(),
            entry.getSecondKey(),
            new FloatTensor(numRows, numCols, numSlices));
      }
    }

    for (Map.Entry<String, FloatMatrix> entry : unaryClassification.entrySet()) {
      int numRows = entry.getValue().rows;
      int numCols = entry.getValue().columns;
      unaryCD.put(entry.getKey(), new FloatMatrix(numRows, numCols));
    }
    for (Map.Entry<String, FloatMatrix> entry : featureVectors.entrySet()) {
      int numRows = entry.getValue().rows;
      int numCols = entry.getValue().columns;
      wordVectorD.put(entry.getKey(), new FloatMatrix(numRows, numCols));
    }

    final List<Tree> forwardPropTrees = new CopyOnWriteArrayList<>();
    Parallelization.iterateInParallel(
        trainingTrees,
        new Parallelization.RunnableWithParams<Tree>() {

          public void run(Tree currentItem, Object[] args) {
            Tree trainingTree = new Tree(currentItem);
            trainingTree.connect(new ArrayList<>(currentItem.children()));
            // this will attach the error vectors and the node vectors
            // to each node in the tree
            forwardPropagateTree(trainingTree);
            forwardPropTrees.add(trainingTree);
          }
        },
        rnTnActorSystem);

    // TODO: we may find a big speedup by separating the derivatives and then summing
    final AtomicDouble error = new AtomicDouble(0);
    Parallelization.iterateInParallel(
        forwardPropTrees,
        new Parallelization.RunnableWithParams<Tree>() {

          public void run(Tree currentItem, Object[] args) {
            backpropDerivativesAndError(
                currentItem, binaryTD, binaryCD, binaryFloatTensorTD, unaryCD, wordVectorD);
            error.addAndGet(currentItem.errorSum());
          }
        },
        new Parallelization.RunnableWithParams<Tree>() {

          public void run(Tree currentItem, Object[] args) {}
        },
        rnTnActorSystem,
        new Object[] {binaryTD, binaryCD, binaryFloatTensorTD, unaryCD, wordVectorD});

    // scale the error by the number of sentences so that the
    // regularization isn't drowned out for large training batchs
    float scale = (1.0f / trainingTrees.size());
    value = error.floatValue() * scale;

    value += scaleAndRegularize(binaryTD, binaryTransform, scale, regTransformMatrix);
    value += scaleAndRegularize(binaryCD, binaryClassification, scale, regClassification);
    value +=
        scaleAndRegularizeFloatTensor(
            binaryFloatTensorTD, binaryFloatTensors, scale, regTransformFloatTensor);
    value += scaleAndRegularize(unaryCD, unaryClassification, scale, regClassification);
    value += scaleAndRegularize(wordVectorD, featureVectors, scale, regWordVector);

    FloatMatrix derivative =
        MatrixUtil.toFlattenedFloat(
            getNumParameters(),
            binaryTD.values().iterator(),
            binaryCD.values().iterator(),
            binaryFloatTensorTD.values().iterator(),
            unaryCD.values().iterator(),
            wordVectorD.values().iterator());

    if (paramAdaGrad == null) paramAdaGrad = new AdaGradFloat(1, derivative.columns);

    derivative.muli(paramAdaGrad.getLearningRates(derivative));

    return derivative;
  }
Esempio n. 3
0
  public INDArray getValueGradient(final List<Tree> trainingBatch) {

    // We use TreeMap for each of these so that they stay in a
    // canonical sorted order
    // TODO: factor out the initialization routines
    // binaryTD stands for Transform Derivatives
    final MultiDimensionalMap<String, String, INDArray> binaryTD =
        MultiDimensionalMap.newTreeBackedMap();
    // the derivatives of the INd4j for the binary nodes
    final MultiDimensionalMap<String, String, INDArray> binaryINDArrayTD =
        MultiDimensionalMap.newTreeBackedMap();
    // binaryCD stands for Classification Derivatives
    final MultiDimensionalMap<String, String, INDArray> binaryCD =
        MultiDimensionalMap.newTreeBackedMap();

    // unaryCD stands for Classification Derivatives
    final Map<String, INDArray> unaryCD = new TreeMap<>();

    // word vector derivatives
    final Map<String, INDArray> wordVectorD = new TreeMap<>();

    for (MultiDimensionalMap.Entry<String, String, INDArray> entry : binaryTransform.entrySet()) {
      int numRows = entry.getValue().rows();
      int numCols = entry.getValue().columns();

      binaryTD.put(entry.getFirstKey(), entry.getSecondKey(), Nd4j.create(numRows, numCols));
    }

    if (!combineClassification) {
      for (MultiDimensionalMap.Entry<String, String, INDArray> entry :
          binaryClassification.entrySet()) {
        int numRows = entry.getValue().rows();
        int numCols = entry.getValue().columns();

        binaryCD.put(entry.getFirstKey(), entry.getSecondKey(), Nd4j.create(numRows, numCols));
      }
    }

    if (useDoubleTensors) {
      for (MultiDimensionalMap.Entry<String, String, INDArray> entry : binaryTensors.entrySet()) {
        int numRows = entry.getValue().size(1);
        int numCols = entry.getValue().size(2);
        int numSlices = entry.getValue().slices();

        binaryINDArrayTD.put(
            entry.getFirstKey(), entry.getSecondKey(), Nd4j.create(numRows, numCols, numSlices));
      }
    }

    for (Map.Entry<String, INDArray> entry : unaryClassification.entrySet()) {
      int numRows = entry.getValue().rows();
      int numCols = entry.getValue().columns();
      unaryCD.put(entry.getKey(), Nd4j.create(numRows, numCols));
    }

    for (String s : vocabCache.words()) {
      INDArray vector = featureVectors.vector(s);
      int numRows = vector.rows();
      int numCols = vector.columns();
      wordVectorD.put(s, Nd4j.create(numRows, numCols));
    }

    final List<Tree> forwardPropTrees = new CopyOnWriteArrayList<>();
    // if(!forwardPropTrees.isEmpty())
    Parallelization.iterateInParallel(
        trainingBatch,
        new Parallelization.RunnableWithParams<Tree>() {

          public void run(Tree currentItem, Object[] args) {
            Tree trainingTree = new Tree(currentItem);
            trainingTree.connect(new ArrayList<>(currentItem.children()));
            // this will attach the error vectors and the node vectors
            // to each node in the tree
            forwardPropagateTree(trainingTree);
            forwardPropTrees.add(trainingTree);
          }
        },
        rnTnActorSystem);

    // TODO: we may find a big speedup by separating the derivatives and then summing
    final AtomicDouble error = new AtomicDouble(0);
    if (!forwardPropTrees.isEmpty())
      Parallelization.iterateInParallel(
          forwardPropTrees,
          new Parallelization.RunnableWithParams<Tree>() {

            public void run(Tree currentItem, Object[] args) {
              backpropDerivativesAndError(
                  currentItem, binaryTD, binaryCD, binaryINDArrayTD, unaryCD, wordVectorD);
              error.addAndGet(currentItem.errorSum());
            }
          },
          new Parallelization.RunnableWithParams<Tree>() {

            public void run(Tree currentItem, Object[] args) {}
          },
          rnTnActorSystem,
          new Object[] {binaryTD, binaryCD, binaryINDArrayTD, unaryCD, wordVectorD});

    // scale the error by the number of sentences so that the
    // regularization isn't drowned out for large training batchs
    double scale =
        trainingBatch == null || trainingBatch.isEmpty() ? 1.0f : (1.0f / trainingBatch.size());
    value = error.doubleValue() * scale;

    value += scaleAndRegularize(binaryTD, binaryTransform, scale, regTransformMatrix);
    value += scaleAndRegularize(binaryCD, binaryClassification, scale, regClassification);
    value +=
        scaleAndRegularizeINDArray(binaryINDArrayTD, binaryTensors, scale, regTransformINDArray);
    value += scaleAndRegularize(unaryCD, unaryClassification, scale, regClassification);
    value += scaleAndRegularize(wordVectorD, featureVectors, scale, regWordVector);

    INDArray derivative =
        Nd4j.toFlattened(
            getNumParameters(),
            binaryTD.values().iterator(),
            binaryCD.values().iterator(),
            binaryINDArrayTD.values().iterator(),
            unaryCD.values().iterator(),
            wordVectorD.values().iterator());

    if (derivative.length() != numParameters)
      throw new IllegalStateException(
          "Gradient has wrong number of parameters "
              + derivative.length()
              + " should have been "
              + numParameters);

    if (paramAdaGrad == null) paramAdaGrad = new AdaGrad(1, derivative.columns());

    derivative = paramAdaGrad.getGradient(derivative, 0);

    return derivative;
  }