/**
   * Write the tsne format
   *
   * @param vec the word vectors to use for labeling
   * @param tsne the tsne array to write
   * @param csv the file to use
   * @throws Exception
   */
  public static void writeTsneFormat(Word2Vec vec, INDArray tsne, File csv) throws Exception {
    BufferedWriter write = new BufferedWriter(new FileWriter(csv));
    int words = 0;
    InMemoryLookupCache l = (InMemoryLookupCache) vec.vocab();
    for (String word : vec.vocab().words()) {
      if (word == null) {
        continue;
      }
      StringBuilder sb = new StringBuilder();
      INDArray wordVector = tsne.getRow(l.wordFor(word).getIndex());
      for (int j = 0; j < wordVector.length(); j++) {
        sb.append(wordVector.getDouble(j));
        if (j < wordVector.length() - 1) {
          sb.append(",");
        }
      }
      sb.append(",");
      sb.append(word);
      sb.append(" ");

      sb.append("\n");
      write.write(sb.toString());
    }

    log.info("Wrote " + words + " with size of " + vec.lookupTable().layerSize());
    write.flush();
    write.close();
  }
Esempio n. 2
0
 public static INDArray getWordVectorMatrix(
     INDArray syn0, InMemoryLookupCache vocab, String word, int k, int K) {
   if (word == null || k > K) return null;
   int idx = vocab.indexOf(word);
   if (idx < 0) idx = vocab.indexOf(org.deeplearning4j.models.word2vec.Word2Vec.UNK);
   return syn0.getRow(vocab.numWords() * k + idx);
 }
  /**
   * Writes the word vectors to the given path. Note that this assumes an in memory cache
   *
   * @param lookupTable
   * @param cache
   * @param path the path to write
   * @throws IOException
   */
  public static void writeWordVectors(
      InMemoryLookupTable lookupTable, InMemoryLookupCache cache, String path) throws IOException {
    BufferedWriter write = new BufferedWriter(new FileWriter(new File(path), false));
    for (int i = 0; i < lookupTable.getSyn0().rows(); i++) {
      String word = cache.wordAtIndex(i);
      if (word == null) {
        continue;
      }
      StringBuilder sb = new StringBuilder();
      sb.append(word.replaceAll(" ", "_"));
      sb.append(" ");
      INDArray wordVector = lookupTable.vector(word);
      for (int j = 0; j < wordVector.length(); j++) {
        sb.append(wordVector.getDouble(j));
        if (j < wordVector.length() - 1) {
          sb.append(" ");
        }
      }
      sb.append("\n");
      write.write(sb.toString());
    }

    write.flush();
    write.close();
  }
  /**
   * This method is required for compatibility purposes. It just transfers vocabulary from
   * VocabHolder into VocabCache
   *
   * @param cache
   */
  public void transferBackToVocabCache(VocabCache cache, boolean emptyHolder) {
    if (!(cache instanceof InMemoryLookupCache))
      throw new IllegalStateException("Sorry, only InMemoryLookupCache use implemented.");

    // make sure that huffman codes are updated before transfer
    List<VocabularyWord> words = words(); // updateHuffmanCodes();

    for (VocabularyWord word : words) {
      if (word.getWord().isEmpty()) continue;
      VocabWord vocabWord = new VocabWord(1, word.getWord());

      // if we're transferring full model, it CAN contain HistoricalGradient for AdaptiveGradient
      // feature
      if (word.getHistoricalGradient() != null) {
        INDArray gradient = Nd4j.create(word.getHistoricalGradient());
        vocabWord.setHistoricalGradient(gradient);
      }

      // put VocabWord into both Tokens and Vocabs maps
      ((InMemoryLookupCache) cache).getVocabs().put(word.getWord(), vocabWord);
      ((InMemoryLookupCache) cache).getTokens().put(word.getWord(), vocabWord);

      // update Huffman tree information
      if (word.getHuffmanNode() != null) {
        vocabWord.setIndex(word.getHuffmanNode().getIdx());
        vocabWord.setCodeLength(word.getHuffmanNode().getLength());
        vocabWord.setPoints(
            arrayToList(word.getHuffmanNode().getPoint(), word.getHuffmanNode().getLength()));
        vocabWord.setCodes(
            arrayToList(word.getHuffmanNode().getCode(), word.getHuffmanNode().getLength()));

        // put word into index
        cache.addWordToIndex(word.getHuffmanNode().getIdx(), word.getWord());
      }

      // update vocabWord counter. substract 1, since its the base value for any token
      // >1 hack is required since VocabCache impl imples 1 as base word count, not 0
      if (word.getCount() > 1) cache.incrementWordCount(word.getWord(), word.getCount() - 1);
    }

    // at this moment its pretty safe to nullify all vocabs.
    if (emptyHolder) {
      idxMap.clear();
      vocabulary.clear();
    }
  }
  @Override
  public boolean equals(Object o) {
    if (this == o) return true;
    if (o == null || getClass() != o.getClass()) return false;

    InMemoryLookupCache that = (InMemoryLookupCache) o;

    if (numDocs != that.numDocs) return false;
    if (wordIndex != null ? !wordIndex.equals(that.wordIndex) : that.wordIndex != null)
      return false;
    if (wordFrequencies != null
        ? !wordFrequencies.equals(that.wordFrequencies)
        : that.wordFrequencies != null) return false;
    if (docFrequencies != null
        ? !docFrequencies.equals(that.docFrequencies)
        : that.docFrequencies != null) return false;
    if (vocabWords().equals(that.vocabWords())) return true;

    return true;
  }
  /**
   * Load a look up cache from an input stream delimited by \n
   *
   * @param from the input stream to read from
   * @return the in memory lookup cache
   */
  public static InMemoryLookupCache load(InputStream from) {
    Reader inputStream = new InputStreamReader(from);
    LineIterator iter = IOUtils.lineIterator(inputStream);
    String line;
    InMemoryLookupCache ret = new InMemoryLookupCache();
    int count = 0;
    while ((iter.hasNext())) {
      line = iter.nextLine();
      if (line.isEmpty()) continue;
      ret.incrementWordCount(line);
      VocabWord word = new VocabWord(1.0, line);
      word.setIndex(count);
      ret.addToken(word);
      ret.addWordToIndex(count, line);
      ret.putVocabWord(line);
      count++;
    }

    return ret;
  }
Esempio n. 7
0
  public static Collection<String> wordsNearest(
      INDArray syn0, InMemoryLookupCache vocab, String word, int k, int n, int K) {

    INDArray vector = Transforms.unitVec(getWordVectorMatrix(syn0, vocab, word, k, K));
    INDArray similarity = vector.mmul(syn0.transpose());
    List<Double> highToLowSimList = getTopN(similarity, n);
    List<String> ret = new ArrayList();

    for (int i = 1; i < highToLowSimList.size(); i++) {
      word =
          vocab.wordAtIndex(highToLowSimList.get(i).intValue() % vocab.numWords())
              + "("
              + highToLowSimList.get(i).intValue() / vocab.numWords()
              + ")";
      if (word != null && !word.equals("UNK") && !word.equals("STOP")) {
        ret.add(word);
        if (ret.size() >= n) {
          break;
        }
      }
    }

    return ret;
  }
Esempio n. 8
0
  private static void addTokenToVocabCache(InMemoryLookupCache vocab, String stringToken) {
    // Making string token into actual token if not already an actual token (vocabWord)
    VocabWord actualToken;
    if (vocab.hasToken(stringToken)) {
      actualToken = vocab.tokenFor(stringToken);
    } else {
      actualToken = new VocabWord(1, stringToken);
    }

    // Set the index of the actual token (vocabWord)
    // Put vocabWord into vocabs in InMemoryVocabCache
    boolean vocabContainsWord = vocab.containsWord(stringToken);
    if (!vocabContainsWord) {
      vocab.addToken(actualToken);
      int idx = vocab.numWords();
      actualToken.setIndex(idx);
      vocab.putVocabWord(stringToken);
    }
  }