Esempio n. 1
0
  private void depleteFood(ComplexFoodParams food, int type) {
    // the algorithm for randomly selecting the food cells to delete
    // is as follows:
    // We iterate through all of the cells and the location of each
    // one containing food type i is added to
    // a random position in our vector. We then calculate exactly
    // how many food items we need to destroy, say N,
    // and we destroy the food at the positions occupying the last N
    // spots in our vector
    List<Location> locations = new ArrayList<Location>();
    for (int x = 0; x < simulation.getTopology().width; ++x) {
      for (int y = 0; y < simulation.getTopology().height; ++y) {
        Location currentPos = new Location(x, y);
        if (env.hasFood(currentPos) && env.getFoodType(currentPos) == type)
          locations.add(currentPos);
      }
    }

    Collections.shuffle(locations, simulation.getRandom());

    int foodToDeplete = (int) (locations.size() * food.depleteRate);

    for (int j = 0; j < foodToDeplete; ++j) {
      Location loc = locations.get(j);

      env.removeFood(loc);
    }
    draughtdays[type] = food.draughtPeriod;
  }
Esempio n. 2
0
 /**
  * Initializes drought days for each food type to zero. Also checks to see if food deplete rates
  * and times are valid for each food type. Valid random food deplete rates and times will be
  * generated using the environments random number generator for each invalid entry.
  */
 private void setupDraughtDeplete() {
   draughtdays = new int[getTypeCount()];
   for (int i = 0; i < getTypeCount(); ++i) {
     draughtdays[i] = 0;
     if (foodData[i].depleteRate < 0.0f || foodData[i].depleteRate > 1.0f)
       foodData[i].depleteRate = simulation.getRandom().nextFloat();
     if (foodData[i].depleteTime <= 0)
       foodData[i].depleteTime = simulation.getRandom().nextInt(100) + 1;
   }
 }
Esempio n. 3
0
  private void depleteFood() {
    // for each agent type, we test to see if its deplete time step has
    // come, and if so deplete the food random
    // by the appropriate percentage

    for (int type = 0; type < foodData.length; type++) {
      ComplexFoodParams f = foodData[type];

      if (f.depleteRate != 0.0f
          && f.growRate > 0
          && simulation.getTime() != 0
          && (simulation.getTime() % f.depleteTime) == 0) {
        depleteFood(f, type);
      }
    }
  }
Esempio n. 4
0
  private void dropFood(int type) {
    float foodDrop = foodData[type].dropRate;
    while (simulation.getRandom().nextFloat() < foodDrop) {
      --foodDrop;
      Location l;
      int j = 0;
      do {
        ++j;
        l = simulation.getTopology().getRandomLocation();

      } while (j < DROP_ATTEMPTS_MAX && env.hasAnythingAt(l));

      if (j < DROP_ATTEMPTS_MAX) {
        env.addFood(l, type);
      }
    }
  }
Esempio n. 5
0
 /** Randomly places food in the environment. */
 public void loadNewFood() {
   for (int i = 0; i < getTypeCount(); ++i) {
     for (int j = 0; j < foodData[i].initial; ++j) {
       Location l;
       int tries = 0;
       do {
         l = simulation.getTopology().getRandomLocation();
       } while (tries++ < 100 && env.hasAnythingAt(l));
       if (tries < 100) {
         env.addFood(l, i);
       }
     }
   }
 }
Esempio n. 6
0
  private void growFood() {
    // create a new ArrayEnvironment and a new food type array
    // loop through all positions

    AbioticMutator abiotic = env.getPlugin(AbioticMutator.class);

    for (int y = 0; y < simulation.getTopology().height; ++y) {
      for (int x = 0; x < simulation.getTopology().width; ++x) {
        Location currentPos = new Location(x, y);

        if (!env.hasAnythingAt(currentPos)) {
          // we should grow food here
          // the following code block tests all adjacent squares
          // to this one and counts how many have food
          // as well how many of each food type exist

          double foodCount = 0;
          int[] mostFood = new int[getTypeCount()];

          for (Direction dir : simulation.getTopology().ALL_4_WAY) {
            Location checkPos = simulation.getTopology().getAdjacent(currentPos, dir);
            if (checkPos != null && env.hasFood(checkPos)) {
              foodCount++;
              mostFood[env.getFoodType(checkPos)]++;
            }
          }

          // and if we have found any adjacent food, theres a
          // chance we want to grow food here
          if (foodCount > 0) {

            int max = 0;
            int growingType;

            // find the food that exists in the largest quantity
            for (int i = 1; i < mostFood.length; ++i) if (mostFood[i] > mostFood[max]) max = i;

            // give the max food an extra chance to be chosen

            if (sameFoodProb >= simulation.getRandom().nextFloat()) {
              growingType = max;
            } else {
              growingType = simulation.getRandom().nextInt(getTypeCount());
            }

            // finally, we grow food according to a certain
            // amount of random chance
            ComplexFoodParams thisType = foodData[growingType];
            float growRate = thisType.growRate;

            for (int i = 0; i < thisType.abioticParams.factorParams.length; i++) {
              AbioticPreferenceParam factorParams =
                  thisType.abioticParams.factorParams[i].preference;
              float factorValue = abiotic.getValue(i, currentPos);
              float discomfort = 1 + factorParams.score(factorValue);
              growRate *= discomfort;
            }

            if (foodCount * growRate > 100 * simulation.getRandom().nextFloat()) {
              env.addFood(currentPos, growingType);
            }
          }
        }
      }
    }
  }