// decide whether we are currently processing SNPs, indels, neither, or both private List<GenotypeLikelihoodsCalculationModel.Model> getGLModelsToUse( final RefMetaDataTracker tracker, final ReferenceContext refContext, final AlignmentContext rawContext) { final List<GenotypeLikelihoodsCalculationModel.Model> models = new ArrayList<GenotypeLikelihoodsCalculationModel.Model>(2); String modelPrefix = ""; if (UAC.GLmodel.name().toUpperCase().contains("BOTH")) modelPrefix = UAC.GLmodel.name().toUpperCase().replaceAll("BOTH", ""); if (!UAC.GLmodel.name().contains(GPSTRING) && UAC.samplePloidy != VariantContextUtils.DEFAULT_PLOIDY) modelPrefix = GPSTRING + modelPrefix; // if we're genotyping given alleles and we have a requested SNP at this position, do SNP if (UAC.GenotypingMode == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE.GENOTYPE_GIVEN_ALLELES) { final VariantContext vcInput = getVCFromAllelesRod( tracker, refContext, rawContext.getLocation(), false, logger, UAC.alleles); if (vcInput == null) return models; if (vcInput.isSNP()) { // ignore SNPs if the user chose INDEL mode only if (UAC.GLmodel.name().toUpperCase().contains("BOTH") || UAC.GLmodel.name().toUpperCase().contains("SNP")) models.add(GenotypeLikelihoodsCalculationModel.Model.valueOf(modelPrefix + "SNP")); } else if (vcInput.isIndel() || vcInput.isMixed()) { // ignore INDELs if the user chose SNP mode only if (UAC.GLmodel.name().toUpperCase().contains("BOTH") || UAC.GLmodel.name().toUpperCase().contains("INDEL")) models.add(GenotypeLikelihoodsCalculationModel.Model.valueOf(modelPrefix + "INDEL")); } // No support for other types yet } else { if (UAC.GLmodel.name().toUpperCase().contains("BOTH")) { models.add(GenotypeLikelihoodsCalculationModel.Model.valueOf(modelPrefix + "SNP")); models.add(GenotypeLikelihoodsCalculationModel.Model.valueOf(modelPrefix + "INDEL")); } else { models.add( GenotypeLikelihoodsCalculationModel.Model.valueOf( modelPrefix + UAC.GLmodel.name().toUpperCase())); } } return models; }
static Map<String, Object> mergeVariantContextAttributes(VariantContext vc1, VariantContext vc2) { Map<String, Object> mergedAttribs = new HashMap<String, Object>(); List<VariantContext> vcList = new LinkedList<VariantContext>(); vcList.add(vc1); vcList.add(vc2); String[] MERGE_OR_ATTRIBS = {VCFConstants.DBSNP_KEY}; for (String orAttrib : MERGE_OR_ATTRIBS) { boolean attribVal = false; for (VariantContext vc : vcList) { attribVal = vc.getAttributeAsBoolean(orAttrib, false); if (attribVal) // already true, so no reason to continue: break; } mergedAttribs.put(orAttrib, attribVal); } return mergedAttribs; }
/** * Read in a list of ExactCall objects from reader, keeping only those with starts in startsToKeep * or all sites (if this is empty) * * @param reader a just-opened reader sitting at the start of the file * @param startsToKeep a list of start position of the calls to keep, or empty if all calls should * be kept * @param parser a genome loc parser to create genome locs * @return a list of ExactCall objects in reader * @throws IOException */ public static List<ExactCall> readExactLog( final BufferedReader reader, final List<Integer> startsToKeep, GenomeLocParser parser) throws IOException { if (reader == null) throw new IllegalArgumentException("reader cannot be null"); if (startsToKeep == null) throw new IllegalArgumentException("startsToKeep cannot be null"); if (parser == null) throw new IllegalArgumentException("GenomeLocParser cannot be null"); List<ExactCall> calls = new LinkedList<ExactCall>(); // skip the header line reader.readLine(); // skip the first "type" line reader.readLine(); while (true) { final VariantContextBuilder builder = new VariantContextBuilder(); final List<Allele> alleles = new ArrayList<Allele>(); final List<Genotype> genotypes = new ArrayList<Genotype>(); final double[] posteriors = new double[2]; final double[] priors = MathUtils.normalizeFromLog10(new double[] {0.5, 0.5}, true); final List<Integer> mle = new ArrayList<Integer>(); final Map<Allele, Double> log10pNonRefByAllele = new HashMap<Allele, Double>(); long runtimeNano = -1; GenomeLoc currentLoc = null; while (true) { final String line = reader.readLine(); if (line == null) return calls; final String[] parts = line.split("\t"); final GenomeLoc lineLoc = parser.parseGenomeLoc(parts[0]); final String variable = parts[1]; final String key = parts[2]; final String value = parts[3]; if (currentLoc == null) currentLoc = lineLoc; if (variable.equals("type")) { if (startsToKeep.isEmpty() || startsToKeep.contains(currentLoc.getStart())) { builder.alleles(alleles); final int stop = currentLoc.getStart() + alleles.get(0).length() - 1; builder.chr(currentLoc.getContig()).start(currentLoc.getStart()).stop(stop); builder.genotypes(genotypes); final int[] mleInts = ArrayUtils.toPrimitive(mle.toArray(new Integer[] {})); final AFCalcResult result = new AFCalcResult(mleInts, 1, alleles, posteriors, priors, log10pNonRefByAllele); calls.add(new ExactCall(builder.make(), runtimeNano, result)); } break; } else if (variable.equals("allele")) { final boolean isRef = key.equals("0"); alleles.add(Allele.create(value, isRef)); } else if (variable.equals("PL")) { final GenotypeBuilder gb = new GenotypeBuilder(key); gb.PL(GenotypeLikelihoods.fromPLField(value).getAsPLs()); genotypes.add(gb.make()); } else if (variable.equals("log10PosteriorOfAFEq0")) { posteriors[0] = Double.valueOf(value); } else if (variable.equals("log10PosteriorOfAFGt0")) { posteriors[1] = Double.valueOf(value); } else if (variable.equals("MLE")) { mle.add(Integer.valueOf(value)); } else if (variable.equals("pNonRefByAllele")) { final Allele a = Allele.create(key); log10pNonRefByAllele.put(a, Double.valueOf(value)); } else if (variable.equals("runtime.nano")) { runtimeNano = Long.valueOf(value); } else { // nothing to do } } } }
static VariantContext reallyMergeIntoMNP( VariantContext vc1, VariantContext vc2, ReferenceSequenceFile referenceFile) { int startInter = vc1.getEnd() + 1; int endInter = vc2.getStart() - 1; byte[] intermediateBases = null; if (startInter <= endInter) { intermediateBases = referenceFile.getSubsequenceAt(vc1.getChr(), startInter, endInter).getBases(); StringUtil.toUpperCase(intermediateBases); } MergedAllelesData mergeData = new MergedAllelesData( intermediateBases, vc1, vc2); // ensures that the reference allele is added GenotypesContext mergedGenotypes = GenotypesContext.create(); for (final Genotype gt1 : vc1.getGenotypes()) { Genotype gt2 = vc2.getGenotype(gt1.getSampleName()); List<Allele> site1Alleles = gt1.getAlleles(); List<Allele> site2Alleles = gt2.getAlleles(); List<Allele> mergedAllelesForSample = new LinkedList<Allele>(); /* NOTE: Since merged alleles are added to mergedAllelesForSample in the SAME order as in the input VC records, we preserve phase information (if any) relative to whatever precedes vc1: */ Iterator<Allele> all2It = site2Alleles.iterator(); for (Allele all1 : site1Alleles) { Allele all2 = all2It.next(); // this is OK, since allSamplesAreMergeable() Allele mergedAllele = mergeData.ensureMergedAllele(all1, all2); mergedAllelesForSample.add(mergedAllele); } double mergedGQ = Math.max(gt1.getLog10PError(), gt2.getLog10PError()); Set<String> mergedGtFilters = new HashSet< String>(); // Since gt1 and gt2 were unfiltered, the Genotype remains unfiltered Map<String, Object> mergedGtAttribs = new HashMap<String, Object>(); PhaseAndQuality phaseQual = calcPhaseForMergedGenotypes(gt1, gt2); if (phaseQual.PQ != null) mergedGtAttribs.put(ReadBackedPhasingWalker.PQ_KEY, phaseQual.PQ); Genotype mergedGt = new Genotype( gt1.getSampleName(), mergedAllelesForSample, mergedGQ, mergedGtFilters, mergedGtAttribs, phaseQual.isPhased); mergedGenotypes.add(mergedGt); } String mergedName = mergeVariantContextNames(vc1.getSource(), vc2.getSource()); double mergedLog10PError = Math.min(vc1.getLog10PError(), vc2.getLog10PError()); Set<String> mergedFilters = new HashSet< String>(); // Since vc1 and vc2 were unfiltered, the merged record remains unfiltered Map<String, Object> mergedAttribs = mergeVariantContextAttributes(vc1, vc2); // ids List<String> mergedIDs = new ArrayList<String>(); if (vc1.hasID()) mergedIDs.add(vc1.getID()); if (vc2.hasID()) mergedIDs.add(vc2.getID()); String mergedID = mergedIDs.isEmpty() ? VCFConstants.EMPTY_ID_FIELD : Utils.join(VCFConstants.ID_FIELD_SEPARATOR, mergedIDs); VariantContextBuilder mergedBuilder = new VariantContextBuilder( mergedName, vc1.getChr(), vc1.getStart(), vc2.getEnd(), mergeData.getAllMergedAlleles()) .id(mergedID) .genotypes(mergedGenotypes) .log10PError(mergedLog10PError) .filters(mergedFilters) .attributes(mergedAttribs); VariantContextUtils.calculateChromosomeCounts(mergedBuilder, true); return mergedBuilder.make(); }
/** * Main entry function to calculate genotypes of a given VC with corresponding GL's * * @param tracker Tracker * @param refContext Reference context * @param rawContext Raw context * @param stratifiedContexts Stratified alignment contexts * @param vc Input VC * @param model GL calculation model * @param inheritAttributesFromInputVC Output VC will contain attributes inherited from input vc * @return VC with assigned genotypes */ public VariantCallContext calculateGenotypes( final RefMetaDataTracker tracker, final ReferenceContext refContext, final AlignmentContext rawContext, Map<String, AlignmentContext> stratifiedContexts, final VariantContext vc, final GenotypeLikelihoodsCalculationModel.Model model, final boolean inheritAttributesFromInputVC, final Map<String, org.broadinstitute.sting.utils.genotyper.PerReadAlleleLikelihoodMap> perReadAlleleLikelihoodMap) { boolean limitedContext = tracker == null || refContext == null || rawContext == null || stratifiedContexts == null; // initialize the data for this thread if that hasn't been done yet if (afcm.get() == null) { afcm.set(AFCalcFactory.createAFCalc(UAC, N, logger)); } // estimate our confidence in a reference call and return if (vc.getNSamples() == 0) { if (limitedContext) return null; return (UAC.OutputMode != OUTPUT_MODE.EMIT_ALL_SITES ? estimateReferenceConfidence(vc, stratifiedContexts, getTheta(model), false, 1.0) : generateEmptyContext(tracker, refContext, stratifiedContexts, rawContext)); } AFCalcResult AFresult = afcm.get().getLog10PNonRef(vc, getAlleleFrequencyPriors(model)); // is the most likely frequency conformation AC=0 for all alternate alleles? boolean bestGuessIsRef = true; // determine which alternate alleles have AF>0 final List<Allele> myAlleles = new ArrayList<Allele>(vc.getAlleles().size()); final List<Integer> alleleCountsofMLE = new ArrayList<Integer>(vc.getAlleles().size()); myAlleles.add(vc.getReference()); for (int i = 0; i < AFresult.getAllelesUsedInGenotyping().size(); i++) { final Allele alternateAllele = AFresult.getAllelesUsedInGenotyping().get(i); if (alternateAllele.isReference()) continue; // we are non-ref if the probability of being non-ref > the emit confidence. // the emit confidence is phred-scaled, say 30 => 10^-3. // the posterior AF > 0 is log10: -5 => 10^-5 // we are non-ref if 10^-5 < 10^-3 => -5 < -3 final boolean isNonRef = AFresult.isPolymorphic(alternateAllele, UAC.STANDARD_CONFIDENCE_FOR_EMITTING / -10.0); // if the most likely AC is not 0, then this is a good alternate allele to use if (isNonRef) { myAlleles.add(alternateAllele); alleleCountsofMLE.add(AFresult.getAlleleCountAtMLE(alternateAllele)); bestGuessIsRef = false; } // if in GENOTYPE_GIVEN_ALLELES mode, we still want to allow the use of a poor allele else if (UAC.GenotypingMode == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE.GENOTYPE_GIVEN_ALLELES) { myAlleles.add(alternateAllele); alleleCountsofMLE.add(AFresult.getAlleleCountAtMLE(alternateAllele)); } } final double PoFGT0 = Math.pow(10, AFresult.getLog10PosteriorOfAFGT0()); // note the math.abs is necessary because -10 * 0.0 => -0.0 which isn't nice final double phredScaledConfidence = Math.abs( !bestGuessIsRef || UAC.GenotypingMode == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE .GENOTYPE_GIVEN_ALLELES ? -10 * AFresult.getLog10PosteriorOfAFEq0() : -10 * AFresult.getLog10PosteriorOfAFGT0()); // return a null call if we don't pass the confidence cutoff or the most likely allele frequency // is zero if (UAC.OutputMode != OUTPUT_MODE.EMIT_ALL_SITES && !passesEmitThreshold(phredScaledConfidence, bestGuessIsRef)) { // technically, at this point our confidence in a reference call isn't accurately estimated // because it didn't take into account samples with no data, so let's get a better estimate return limitedContext ? null : estimateReferenceConfidence(vc, stratifiedContexts, getTheta(model), true, PoFGT0); } // start constructing the resulting VC final GenomeLoc loc = genomeLocParser.createGenomeLoc(vc); final VariantContextBuilder builder = new VariantContextBuilder( "UG_call", loc.getContig(), loc.getStart(), loc.getStop(), myAlleles); builder.log10PError(phredScaledConfidence / -10.0); if (!passesCallThreshold(phredScaledConfidence)) builder.filters(filter); // create the genotypes final GenotypesContext genotypes = afcm.get().subsetAlleles(vc, myAlleles, true, ploidy); builder.genotypes(genotypes); // print out stats if we have a writer if (verboseWriter != null && !limitedContext) printVerboseData(refContext.getLocus().toString(), vc, PoFGT0, phredScaledConfidence, model); // *** note that calculating strand bias involves overwriting data structures, so we do that // last final HashMap<String, Object> attributes = new HashMap<String, Object>(); // inherit attributed from input vc if requested if (inheritAttributesFromInputVC) attributes.putAll(vc.getAttributes()); // if the site was downsampled, record that fact if (!limitedContext && rawContext.hasPileupBeenDownsampled()) attributes.put(VCFConstants.DOWNSAMPLED_KEY, true); if (UAC.ANNOTATE_NUMBER_OF_ALLELES_DISCOVERED) attributes.put(NUMBER_OF_DISCOVERED_ALLELES_KEY, vc.getAlternateAlleles().size()); // add the MLE AC and AF annotations if (alleleCountsofMLE.size() > 0) { attributes.put(VCFConstants.MLE_ALLELE_COUNT_KEY, alleleCountsofMLE); final int AN = builder.make().getCalledChrCount(); final ArrayList<Double> MLEfrequencies = new ArrayList<Double>(alleleCountsofMLE.size()); // the MLEAC is allowed to be larger than the AN (e.g. in the case of all PLs being 0, the GT // is ./. but the exact model may arbitrarily choose an AC>1) for (int AC : alleleCountsofMLE) MLEfrequencies.add(Math.min(1.0, (double) AC / (double) AN)); attributes.put(VCFConstants.MLE_ALLELE_FREQUENCY_KEY, MLEfrequencies); } if (UAC.COMPUTE_SLOD && !limitedContext && !bestGuessIsRef) { // final boolean DEBUG_SLOD = false; // the overall lod // double overallLog10PofNull = AFresult.log10AlleleFrequencyPosteriors[0]; double overallLog10PofF = AFresult.getLog10LikelihoodOfAFGT0(); // if ( DEBUG_SLOD ) System.out.println("overallLog10PofF=" + overallLog10PofF); List<Allele> allAllelesToUse = builder.make().getAlleles(); // the forward lod VariantContext vcForward = calculateLikelihoods( tracker, refContext, stratifiedContexts, AlignmentContextUtils.ReadOrientation.FORWARD, allAllelesToUse, false, model, perReadAlleleLikelihoodMap); AFresult = afcm.get().getLog10PNonRef(vcForward, getAlleleFrequencyPriors(model)); // double[] normalizedLog10Posteriors = // MathUtils.normalizeFromLog10(AFresult.log10AlleleFrequencyPosteriors, true); double forwardLog10PofNull = AFresult.getLog10LikelihoodOfAFEq0(); double forwardLog10PofF = AFresult.getLog10LikelihoodOfAFGT0(); // if ( DEBUG_SLOD ) System.out.println("forwardLog10PofNull=" + forwardLog10PofNull + ", // forwardLog10PofF=" + forwardLog10PofF); // the reverse lod VariantContext vcReverse = calculateLikelihoods( tracker, refContext, stratifiedContexts, AlignmentContextUtils.ReadOrientation.REVERSE, allAllelesToUse, false, model, perReadAlleleLikelihoodMap); AFresult = afcm.get().getLog10PNonRef(vcReverse, getAlleleFrequencyPriors(model)); // normalizedLog10Posteriors = // MathUtils.normalizeFromLog10(AFresult.log10AlleleFrequencyPosteriors, true); double reverseLog10PofNull = AFresult.getLog10LikelihoodOfAFEq0(); double reverseLog10PofF = AFresult.getLog10LikelihoodOfAFGT0(); // if ( DEBUG_SLOD ) System.out.println("reverseLog10PofNull=" + reverseLog10PofNull + ", // reverseLog10PofF=" + reverseLog10PofF); double forwardLod = forwardLog10PofF + reverseLog10PofNull - overallLog10PofF; double reverseLod = reverseLog10PofF + forwardLog10PofNull - overallLog10PofF; // if ( DEBUG_SLOD ) System.out.println("forward lod=" + forwardLod + ", reverse lod=" + // reverseLod); // strand score is max bias between forward and reverse strands double strandScore = Math.max(forwardLod, reverseLod); // rescale by a factor of 10 strandScore *= 10.0; // logger.debug(String.format("SLOD=%f", strandScore)); if (!Double.isNaN(strandScore)) attributes.put("SB", strandScore); } // finish constructing the resulting VC builder.attributes(attributes); VariantContext vcCall = builder.make(); // if we are subsetting alleles (either because there were too many or because some were not // polymorphic) // then we may need to trim the alleles (because the original VariantContext may have had to pad // at the end). if (myAlleles.size() != vc.getAlleles().size() && !limitedContext) // limitedContext callers need to handle allele trimming on their own to // keep their perReadAlleleLikelihoodMap alleles in sync vcCall = VariantContextUtils.reverseTrimAlleles(vcCall); if (annotationEngine != null && !limitedContext) { // limitedContext callers need to handle annotations on their own by // calling their own annotationEngine // Note: we want to use the *unfiltered* and *unBAQed* context for the annotations final ReadBackedPileup pileup = rawContext.getBasePileup(); stratifiedContexts = AlignmentContextUtils.splitContextBySampleName(pileup); vcCall = annotationEngine.annotateContext( tracker, refContext, stratifiedContexts, vcCall, perReadAlleleLikelihoodMap); } return new VariantCallContext(vcCall, confidentlyCalled(phredScaledConfidence, PoFGT0)); }
/** * Compute full calls at a given locus. Entry point for engine calls from the UnifiedGenotyper. * * <p>If allSamples != null, then the output variantCallContext is guarenteed to contain a * genotype for every sample in allSamples. If it's null there's no such guarentee. Providing this * argument is critical when the resulting calls will be written to a VCF file. * * @param tracker the meta data tracker * @param refContext the reference base * @param rawContext contextual information around the locus * @param allSamples set of all sample names that we might call (i.e., those in the VCF header) * @return the VariantCallContext object */ public List<VariantCallContext> calculateLikelihoodsAndGenotypes( final RefMetaDataTracker tracker, final ReferenceContext refContext, final AlignmentContext rawContext, final Set<String> allSamples) { final List<VariantCallContext> results = new ArrayList<VariantCallContext>(2); final List<GenotypeLikelihoodsCalculationModel.Model> models = getGLModelsToUse(tracker, refContext, rawContext); final Map<String, org.broadinstitute.sting.utils.genotyper.PerReadAlleleLikelihoodMap> perReadAlleleLikelihoodMap = new HashMap< String, org.broadinstitute.sting.utils.genotyper.PerReadAlleleLikelihoodMap>(); if (models.isEmpty()) { results.add( UAC.OutputMode == OUTPUT_MODE.EMIT_ALL_SITES && UAC.GenotypingMode == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE.GENOTYPE_GIVEN_ALLELES ? generateEmptyContext(tracker, refContext, null, rawContext) : null); } else { for (final GenotypeLikelihoodsCalculationModel.Model model : models) { perReadAlleleLikelihoodMap.clear(); final Map<String, AlignmentContext> stratifiedContexts = getFilteredAndStratifiedContexts(UAC, refContext, rawContext, model); if (stratifiedContexts == null) { results.add( UAC.OutputMode == OUTPUT_MODE.EMIT_ALL_SITES && UAC.GenotypingMode == GenotypeLikelihoodsCalculationModel.GENOTYPING_MODE .GENOTYPE_GIVEN_ALLELES ? generateEmptyContext(tracker, refContext, null, rawContext) : null); } else { final VariantContext vc = calculateLikelihoods( tracker, refContext, stratifiedContexts, AlignmentContextUtils.ReadOrientation.COMPLETE, null, true, model, perReadAlleleLikelihoodMap); if (vc != null) results.add( calculateGenotypes( tracker, refContext, rawContext, stratifiedContexts, vc, model, true, perReadAlleleLikelihoodMap)); } } } return results; }