/** * @throws InvalidColumnIndexException * @throws IOException */ public void executeLimma() { Limma limma = null; if (classValues.size() > 2) { limma = new Limma(babelomicsHomePath + "/bin/diffexp/limma_multiclasses.r"); } else if (classValues.size() == 2) { limma = new Limma(babelomicsHomePath + "/bin/diffexp/limma_twoclasses.r"); } else if (classValues.size() == 1) { limma = new Limma(babelomicsHomePath + "/bin/diffexp/limma_oneclass.r"); } else { abort( "testmismatched_executelimma_classcomparison", "test " + test + " not supported for " + classValues.size() + "-class test", "test " + test + " not supported for " + classValues.size() + "-class test", "test " + test + " not supported for " + classValues.size() + "-class test"); } // System.out.println("dataset = " + dataset.toString()); System.out.println("class name = " + className); limma.setInputFilename(dataset.getDatasetFile().getAbsolutePath()); limma.setClasses(dataset.getVariables().getByName(className).getValues()); limma.setContrast(classValues); try { Dataset subDataset = dataset.getSubDataset(className, classValues); // apply test and multiple test correction according // TestResultList<LimmaTestResult> res = limma.compute(); DiffExpressionUtils.multipleTestCorrection(res, correction); // create output file // int[] columnOrder = ListUtils.order(subDataset.getVariables().getByName(className).getValues()); int[] rowOrder = ListUtils.order(ArrayUtils.toList(res.getStatistics()), true); DataFrame dataFrame = new DataFrame(subDataset.getFeatureNames().size(), 0); dataFrame.addColumn( "statistic", ListUtils.toStringList( ListUtils.ordered(ArrayUtils.toList(res.getStatistics()), rowOrder))); dataFrame.addColumn( "p-value", ListUtils.toStringList(ListUtils.ordered(ArrayUtils.toList(res.getPValues()), rowOrder))); dataFrame.addColumn( "adj. p-value", ListUtils.toStringList( ListUtils.ordered(ArrayUtils.toList(res.getAdjPValues()), rowOrder))); dataFrame.setRowNames(ListUtils.ordered(subDataset.getFeatureNames(), rowOrder)); FeatureData featureData = new FeatureData(dataFrame); File file = new File(outdir + "/" + test + ".txt"); featureData.save(file); if (file.exists()) { result.addOutputItem( new Item( test + "file", file.getName(), "Limma output file", TYPE.FILE, new ArrayList<String>(2), new HashMap<String, String>(2), "Limma output files")); } // getting significative genes // DiffExpressionUtils.addSignificativeResults( subDataset, test, "statistic", res.getStatistics(), "adj. p-value", res.getAdjPValues(), "p-value", res.getPValues(), null, null, null, null, className, columnOrder, pValue, maxDisplay, this); DiffExpressionUtils.createFatiScanRedirection(dataFrame, test, "statistic", result, outdir); } catch (Exception e) { e.printStackTrace(); abort( "exception_executelimma_classcomparison", "error running limma", "error running limma: " + e.toString(), "error running limma: " + e.toString()); } }
private void setFoldChangeResults( Dataset subDataset, String test, String testLabel, double[] res, String className) throws InvalidIndexException, IOException { // int[] columnOrder = // ListUtils.order(subDataset.getVariables().getByName(className).getValues()); int[] rowOrder = ListUtils.order(ArrayUtils.toList(res), true); DataFrame dataFrame = new DataFrame(subDataset.getFeatureNames().size(), 0); dataFrame.addColumn(test, ListUtils.ordered(ArrayUtils.toStringList(res), rowOrder)); dataFrame.setRowNames(ListUtils.ordered(subDataset.getFeatureNames(), rowOrder)); FeatureData featureData = new FeatureData(dataFrame); File file = new File(outdir + "/" + test + "_foldchange.txt"); IOUtils.write(file, dataFrame.toString(true, true)); /** Get significative terms, babelomics 5 * */ List<String> featureNames = new ArrayList<String>(); List<String> featureValues = new ArrayList<String>(); List<String> featureNamesUp = new ArrayList<String>(); List<String> featureNamesDown = new ArrayList<String>(); for (String rowName : dataFrame.getRowNames()) { List<String> row = dataFrame.getRow(rowName); double stats = Double.parseDouble(row.get(0)); if (Math.abs(stats) >= foldChangeValue) { featureNames.add(rowName); featureValues.add(row.get(0)); if (stats >= 0) featureNamesUp.add(rowName); else featureNamesDown.add(rowName); } } dataFrame = new DataFrame(featureNames.size(), 0); dataFrame.addColumn(test, featureValues); dataFrame.setRowNames(featureNames); List<Integer> sigRowIndexes = new ArrayList<Integer>(); for (String feat : featureNames) { int idx = 0; for (String featSub : subDataset.getFeatureNames()) { if (feat.equalsIgnoreCase(featSub)) sigRowIndexes.add(idx); idx++; } } DoubleMatrix doubleMatrix = new DoubleMatrix(dataFrame.getRowDimension(), subDataset.getColumnDimension()); for (int i = 0; i < sigRowIndexes.size(); i++) { doubleMatrix.setRow(i, subDataset.getDoubleMatrix().getRow(sigRowIndexes.get(i))); } File fileXX = new File(outdir + "/" + test + "_foldchange_significative_dataset.txt"); Dataset sigDataset = new Dataset(subDataset.getSampleNames(), featureNames, doubleMatrix); sigDataset.save(fileXX); File fileAux = new File(outdir + "/" + test + "_foldchange_significative_table.txt"); IOUtils.write(fileAux, dataFrame.toString(true, true)); fileAux = new File(outdir + "/" + test + "_foldchange_significative_table_up.txt"); IOUtils.write(fileAux, featureNamesUp); fileAux = new File(outdir + "/" + test + "_foldchange_significative_table_down.txt"); IOUtils.write(fileAux, featureNamesDown); // fileAux = new File(outdir + "/" + test + "_foldchange_significative_dataset.txt"); // IOUtils.write(fileAux, featureNamesDown); // // List<String> featuresUp = new ArrayList<String>(); // List<String> featuresDown = new ArrayList<String>(); // for (String rowName : dataFrame.getRowNames()) { // List<String> row = dataFrame.getRow(rowName); // double stats = Double.parseDouble(row.get(0)); // if(stats>=foldChangeValue){ // // //// featuresUp.add(rowName); //// else //// featuresDown.add(rowName); // } // } // file = new File(tool.getOutdir() + "/" + test + "_significative_table_up.txt"); // IOUtils.write(file, featuresUp); // file = new File(tool.getOutdir() + "/" + test + "_significative_table_down.txt"); // IOUtils.write(file, featuresDown); // featureData.save(file); if (file.exists()) { result.addOutputItem( new Item( test + "_foldchange", file.getName(), testLabel + " fold-change output file", TYPE.FILE, new ArrayList<String>(), new HashMap<String, String>(), testLabel + " fold-change.Output files")); String json = "{\\\"paramfilename\\\": \\\"input_params.txt\\\", \\\"testfilename\\\": \\\"" + file.getName() + "\\\"}"; result.addOutputItem( new Item( "diff_expr_" + StringUtils.randomString(8), json, "Significative results", TYPE.FILE, StringUtils.toList("DIFF_EXPRESSION_VIEWER"), new HashMap<String, String>(), testLabel + " fold-change. Significative results")); DiffExpressionUtils.createFatiScanRedirection( dataFrame, test, test, result, outdir, testLabel + " fold-change."); } /* List<Double> orderedRes = ListUtils.ordered(ArrayUtils.toList(res), rowOrder); int posValues = 0; int negValues = 0; for(int i=0 ; i<orderedRes.size() ; i++) { if (Math.abs(orderedRes.get(i))>foldChangeValue) { if (orderedRes.get(i)>0) { posValues++; } else { negValues++; } } } if (posValues + negValues == 0) { result.addOutputItem(new Item("no_sig_results", "No significative results (fold-change value = " + foldChangeValue + ")", "Significative results", TYPE.MESSAGE, new ArrayList<String>(), new HashMap<String, String>(2), testLabel + " fold-change.Significative results")); return; } int halfDisplay = maxDisplay/2; int posValuesToDisplay = posValues; int negValuesToDisplay = negValues; if (posValues + negValues > maxDisplay) { if (Math.min(posValues, negValues)>halfDisplay) { posValuesToDisplay = halfDisplay; negValuesToDisplay = halfDisplay; } else { posValuesToDisplay = posValues>negValues ? (maxDisplay-negValues) : posValues; negValuesToDisplay = negValues>posValues ? (maxDisplay-posValues) : negValues; } } int nbToDisplay = posValuesToDisplay + negValuesToDisplay; DoubleMatrix doubleMatrix = new DoubleMatrix(nbToDisplay, subDataset.getColumnDimension()); int rowIndex = 0; int negLimit = rowOrder.length-negValuesToDisplay; List<Integer> sigRowIndexes = new ArrayList<Integer>(); for(int i=0 ; i<rowOrder.length ; i++) { if (i<posValuesToDisplay || i>=negLimit) { doubleMatrix.setRow(rowIndex++, subDataset.getDoubleMatrix().getRow(rowOrder[i])); //System.out.println(subDataset.getFeatureNames().get(sigOrder[i])); sigRowIndexes.add(rowOrder[i]); } } file = new File(outdir + "/" + test +"_fold_change_significative_dataset.txt"); Dataset sigDataset = new Dataset(subDataset.getSampleNames(), ListUtils.subList(subDataset.getFeatureNames(), ListUtils.toIntArray(sigRowIndexes)), doubleMatrix); sigDataset.setVariables(subDataset.getVariables()); sigDataset.validate(); sigDataset.save(file); if (file.exists()) { String tags = "datamatrix,expression"; result.addOutputItem(new Item(test + "_sig_dataset", file.getName(), "Significative values dataset (fold-change value = " + foldChangeValue + ")", TYPE.DATA, StringUtils.toList(tags, ","), new HashMap<String, String>(2), testLabel + " fold-change.Significative results")); File redirectionFile = new File(outdir + "/clustering.redirection"); DiffExpressionUtils.createClusteringRedirectionFile(redirectionFile, file); if ( redirectionFile.exists() ) { tags = "REDIRECTION(" + redirectionFile.getName() + ":Send to Clustering tool...)"; result.addOutputItem(new Item(test + "_sig_dataset", file.getName(), "Significative values dataset (fold-change value = " + foldChangeValue + ")", TYPE.FILE, StringUtils.toList(tags, ","), new HashMap<String, String>(2), testLabel + " fold-change.Significative results")); } } rowOrder = ListUtils.order(ListUtils.subList(ArrayUtils.toList(res), ListUtils.toIntArray(sigRowIndexes)), true); DataFrame sigDataFrame = new DataFrame(sigDataset.getFeatureNames().size(), 0); sigDataFrame.addColumn(test, ListUtils.toStringList(ListUtils.ordered(ListUtils.subList(ArrayUtils.toList(res), ListUtils.toIntArray(sigRowIndexes)), rowOrder))); sigDataFrame.setRowNames(ListUtils.ordered(ListUtils.subList(subDataset.getFeatureNames(), ListUtils.toIntArray(sigRowIndexes)), rowOrder)); // adding table to results // file = new File(outdir + "/" + test + "fold_change_significative_table.txt"); IOUtils.write(file, sigDataFrame.toString(true, true)); if ( file.exists() ) { result.addOutputItem(new Item(test + "fold_change_table", file.getName(), "Significative values table (fold-change value = " + foldChangeValue + ")", TYPE.FILE, StringUtils.toList("TABLE," + test.toUpperCase() + "_FOLD_CHANGE_TABLE", ","), new HashMap<String, String>(2), testLabel + " fold-change.Significative results")); } // adding heatmap to results // Canvas sigHeatmap = DiffExpressionUtils.generateHeatmap(sigDataset, className, columnOrder, rowOrder, testLabel, ListUtils.toDoubleArray(ListUtils.subList(ArrayUtils.toList(res), ListUtils.toIntArray(sigRowIndexes))), null, null); if (sigHeatmap == null) { printError("ioexception_execute_fold_change_classcomparison", "ERROR", "Error generating " + test + " fold-change heatmap image"); } else { try { File sigHeatmapFile = new File(outdir + "/" + test + "fold_change_heatmap_significative.png"); sigHeatmap.save(sigHeatmapFile.getAbsolutePath()); if (sigHeatmapFile.exists()) { result.addOutputItem(new Item(test + "_fold_change_heatmap_significative", sigHeatmapFile.getName(), testLabel + " fold-change heatmap with significative values (fold-change value = " + foldChangeValue + ")", TYPE.IMAGE, new ArrayList<String>(2), new HashMap<String, String>(2), testLabel + " fold-change.Significative results")); } } catch (IOException e) { printError("ioexception_execute_fold_change_classcomparison", "ERROR", "Error saving " + test + " fold-change heatmap image"); } } DiffExpressionUtils.createFatiGoRedirection(dataFrame.getRowNames(), dataFrame.getColumnAsDoubleArray(test), test, result, outdir, testLabel + " fold-change."); DiffExpressionUtils.createFatiScanRedirection(sigDataFrame, test, test, result, outdir, testLabel + " fold-change."); */ }
public void executeAnova() { DoubleMatrix matrix = null; List<String> vars = new ArrayList<String>(); List<Integer> indices = new ArrayList<Integer>(); List<String> values = dataset.getVariables().getByName(className).getValues(); if (values.size() == classValues.size()) { matrix = dataset.getDoubleMatrix(); vars = values; } else { for (int i = 0; i < values.size(); i++) { if (classValues.contains(values.get(i))) { indices.add(i); vars.add(values.get(i)); } } matrix = dataset.getSubMatrixByColumns(ListUtils.toIntArray(indices)); } try { Dataset subDataset = dataset.getSubDataset(className, classValues); // apply test and multiple test correction according // AnovaTest anova = new AnovaTest(matrix, vars); TestResultList<AnovaTestResult> res = anova.compute(); DiffExpressionUtils.multipleTestCorrection(res, correction); // create output file // int[] columnOrder = ListUtils.order(subDataset.getVariables().getByName(className).getValues()); int[] rowOrder = ListUtils.order(ArrayUtils.toList(res.getStatistics()), true); DataFrame dataFrame = new DataFrame(subDataset.getFeatureNames().size(), 0); dataFrame.addColumn( "statistic", ListUtils.toStringList( ListUtils.ordered(ArrayUtils.toList(res.getStatistics()), rowOrder))); dataFrame.addColumn( "p-value", ListUtils.toStringList(ListUtils.ordered(ArrayUtils.toList(res.getPValues()), rowOrder))); dataFrame.addColumn( "adj. p-value", ListUtils.toStringList( ListUtils.ordered(ArrayUtils.toList(res.getAdjPValues()), rowOrder))); dataFrame.setRowNames(ListUtils.ordered(subDataset.getFeatureNames(), rowOrder)); FeatureData featureData = new FeatureData(dataFrame); File file = new File(outdir + "/" + test + ".txt"); featureData.save(file); if (file.exists()) { result.addOutputItem( new Item( test + "file", file.getName(), "Anova output file", TYPE.FILE, new ArrayList<String>(2), new HashMap<String, String>(2), "Anova output files")); } // getting significative genes // DiffExpressionUtils.addSignificativeResults( subDataset, test, "statistic", res.getStatistics(), "adj. p-value", res.getAdjPValues(), "p-value", res.getPValues(), null, null, null, null, className, columnOrder, pValue, maxDisplay, this); DiffExpressionUtils.createFatiScanRedirection(dataFrame, test, "statistic", result, outdir); } catch (Exception e) { e.printStackTrace(); abort( "exception_executeanova_classcomparison", "error running anova", "error running anova: " + e.getMessage(), "error running anova: " + e.getMessage()); } }
public void executeT() { int[] cols = dataset.getColumnIndexesByVariableValue(className, classValues.get(0)); DoubleMatrix sample1 = dataset.getSubMatrixByColumns(cols); cols = dataset.getColumnIndexesByVariableValue(className, classValues.get(1)); DoubleMatrix sample2 = dataset.getSubMatrixByColumns(cols); try { Dataset subDataset = dataset.getSubDataset(className, classValues); // apply test and multiple test correction according // TTest tTest = new TTest(); TestResultList<TTestResult> res = tTest.tTest(sample1, sample2); DiffExpressionUtils.multipleTestCorrection(res, correction); // create output file // int[] columnOrder = ListUtils.order(subDataset.getVariables().getByName(className).getValues()); int[] rowOrder = ListUtils.order(ArrayUtils.toList(res.getStatistics()), true); DataFrame dataFrame = new DataFrame(subDataset.getFeatureNames().size(), 0); dataFrame.addColumn( "statistic", ListUtils.toStringList( ListUtils.ordered(ArrayUtils.toList(res.getStatistics()), rowOrder))); dataFrame.addColumn( "p-value", ListUtils.toStringList(ListUtils.ordered(ArrayUtils.toList(res.getPValues()), rowOrder))); dataFrame.addColumn( "adj. p-value", ListUtils.toStringList( ListUtils.ordered(ArrayUtils.toList(res.getAdjPValues()), rowOrder))); dataFrame.setRowNames(ListUtils.ordered(subDataset.getFeatureNames(), rowOrder)); FeatureData featureData = new FeatureData(dataFrame); File file = new File(outdir + "/t.txt"); featureData.save(file); if (file.exists()) { result.addOutputItem( new Item( "tfile", file.getName(), "T-test output file", TYPE.FILE, new ArrayList<String>(), new HashMap<String, String>(), "T-test output files")); } // getting significative genes // DiffExpressionUtils.addSignificativeResults( subDataset, test, "statistic", res.getStatistics(), "adj. p-value", res.getAdjPValues(), "p-value", res.getPValues(), null, null, null, null, className, columnOrder, pValue, maxDisplay, this); DiffExpressionUtils.createFatiScanRedirection(dataFrame, test, "statistic", result, outdir); } catch (Exception e) { e.printStackTrace(); abort("exception_executet_classcomparison", "ERROR", "Error running t-test", ""); } }