/** * Returns a day count for the specified years, months and days. All values must be specified in * their internal representation (undefined values are supported, too). Algorithm is derived from * J R Stockton (http://www.merlyn.demon.co.uk/daycount.htm). * * @param year year * @param month month * @param day days * @return days */ private static BigDecimal days(final long year, final int month, final int day) { final long y = year - (month < 2 ? 1 : 0); final int m = month + (month < 2 ? 13 : 1); final int d = day + 1; return BD365 .multiply(BigDecimal.valueOf(y)) .add(BigDecimal.valueOf(y / 4 - y / 100 + y / 400 - 92 + d + (153 * m - 2) / 5)); }
/** * Initializes the dayTime component. * * @param vl value * @param mt matcher * @param p first matching position * @param ii input info * @throws QueryException query exception */ void dayTime(final byte[] vl, final Matcher mt, final int p, final InputInfo ii) throws QueryException { final long d = mt.group(p) != null ? toLong(mt.group(p + 1), true, ii) : 0; final long h = mt.group(p + 3) != null ? toLong(mt.group(p + 4), true, ii) : 0; final long m = mt.group(p + 5) != null ? toLong(mt.group(p + 6), true, ii) : 0; final BigDecimal s = mt.group(p + 7) != null ? toDecimal(mt.group(p + 8), true, ii) : BigDecimal.ZERO; sec = s.add(BigDecimal.valueOf(d).multiply(DAYSECONDS)) .add(BigDecimal.valueOf(h).multiply(BD3600)) .add(BigDecimal.valueOf(m).multiply(BD60)); if (!mt.group(1).isEmpty()) sec = sec.negate(); final double v = sec.doubleValue(); if (v <= Long.MIN_VALUE || v >= Long.MAX_VALUE) throw DURRANGE_X_X.get(ii, type, vl); }
/** * Returns the date in seconds. * * @return seconds */ final BigDecimal seconds() { int z = tz; if (z == Short.MAX_VALUE) { // [CG] XQuery, DateTime: may be removed final long n = System.currentTimeMillis(); z = Calendar.getInstance().getTimeZone().getOffset(n) / 60000; } return (sec == null ? BigDecimal.ZERO : sec) .add(BigDecimal.valueOf(Math.max(0, hou) * 3600 + Math.max(0, min) * 60 - z * 60)); }
/** * Converts a day count into year, month and day components. Algorithm is derived from J R * Stockton (http://www.merlyn.demon.co.uk/daycount.htm). * * @param days day count * @return result array */ private static long[] ymd(final BigDecimal days) { BigDecimal d = days; BigDecimal t = d.add(BD36525).multiply(BD4).divideToIntegralValue(BD146097).subtract(BigDecimal.ONE); BigDecimal y = BD100.multiply(t); d = d.subtract(BD36524.multiply(t).add(t.divideToIntegralValue(BD4))); t = d.add(BD366).multiply(BD4).divideToIntegralValue(BD1461).subtract(BigDecimal.ONE); y = y.add(t); d = d.subtract(BD365.multiply(t).add(t.divideToIntegralValue(BD4))); final BigDecimal m = BD5.multiply(d).add(BD2).divideToIntegralValue(BD153); d = d.subtract(BD153.multiply(m).add(BD2).divideToIntegralValue(BD5)); long mm = m.longValue(); if (mm > 9) { mm -= 12; y = y.add(BigDecimal.ONE); } return new long[] {y.subtract(BigDecimal.valueOf(ADD_NEG)).longValue(), mm + 2, d.longValue()}; }
/** * Adjusts the timezone. * * @param zone timezone * @param spec indicates if zone has been specified (may be {@code null}) * @param ii input info * @throws QueryException query exception */ void tz(final DTDur zone, final boolean spec, final InputInfo ii) throws QueryException { final short t; if (spec && zone == null) { t = Short.MAX_VALUE; } else { if (zone == null) { final Calendar c = Calendar.getInstance(); t = (short) ((c.get(Calendar.ZONE_OFFSET) + c.get(Calendar.DST_OFFSET)) / 60000); } else { t = (short) (zone.min() + zone.hou() * 60); if (zone.sec().signum() != 0) throw ZONESEC_X.get(ii, zone); if (Math.abs(t) > 60 * 14 || zone.day() != 0) throw INVALZONE_X.get(ii, zone); } // change time if two competing time zones exist if (tz != Short.MAX_VALUE) add(BigDecimal.valueOf(60L * (t - tz))); } tz = t; }
/** * Adds the specified dayTime duration. * * @param add value to be added */ private void add(final BigDecimal add) { // normalized modulo: sc % 60 vs. (-sc + sc % 60 + 60 + sc) % 60 final BigDecimal sc = sec().add(add); sec = sc.signum() >= 0 ? sc.remainder(BD60) : sc.negate().add(sc.remainder(BD60)).add(BD60).add(sc).remainder(BD60); final long mn = Math.max(min(), 0) + div(sc.longValue(), 60); min = (byte) mod(mn, 60); final long ho = Math.max(hou, 0) + div(mn, 60); hou = (byte) mod(ho, 24); final long da = div(ho, 24); final long[] ymd = ymd(days().add(BigDecimal.valueOf(da))); yea = ymd[0]; mon = (byte) ymd[1]; day = (byte) ymd[2]; }
/** * Formats the specified number and returns a string representation. * * @param item item * @param pics pictures * @param ii input info * @return picture variables * @throws QueryException query exception */ private byte[] format(final ANum item, final Picture[] pics, final InputInfo ii) throws QueryException { // Rule 1: return results for NaN final double d = item.dbl(ii); if (Double.isNaN(d)) return nan; // Rule 2: check if value if negative (smaller than zero or -0) final boolean neg = d < 0 || d == 0 && Double.doubleToLongBits(d) == Long.MIN_VALUE; final Picture pic = pics[neg && pics.length == 2 ? 1 : 0]; final IntList res = new IntList(), intgr = new IntList(), fract = new IntList(); int exp = 0; // Rule 3: percent/permille ANum num = item; if (pic.pc) num = (ANum) Calc.MULT.ev(num, Int.get(100), ii); if (pic.pm) num = (ANum) Calc.MULT.ev(num, Int.get(1000), ii); if (Double.isInfinite(num.dbl(ii))) { // Rule 4: infinity intgr.add(new TokenParser(inf).toArray()); } else { // Rule 5: exponent if (pic.minExp != 0 && d != 0) { BigDecimal dec = num.dec(ii).abs().stripTrailingZeros(); int scl = 0; if (dec.compareTo(BigDecimal.ONE) >= 0) { scl = dec.setScale(0, RoundingMode.HALF_DOWN).precision(); } else { while (dec.compareTo(BigDecimal.ONE) < 0) { dec = dec.multiply(BigDecimal.TEN); scl--; } scl++; } exp = scl - pic.min[0]; if (exp != 0) { final BigDecimal n = BigDecimal.TEN.pow(Math.abs(exp)); num = (ANum) Calc.MULT.ev(num, Dec.get(exp > 0 ? BigDecimal.ONE.divide(n) : n), ii); } } num = num.round(pic.maxFrac, true).abs(); // convert positive number to string final String s = (num instanceof Dbl || num instanceof Flt ? Dec.get(BigDecimal.valueOf(num.dbl(ii))) : num) .toString(); // integer/fractional separator final int sep = s.indexOf('.'); // create integer part final int sl = s.length(); final int il = sep == -1 ? sl : sep; for (int i = il; i < pic.min[0]; ++i) intgr.add(zero); // fractional number: skip leading 0 if (!s.startsWith("0.") || pic.min[0] > 0) { for (int i = 0; i < il; i++) intgr.add(zero + s.charAt(i) - '0'); } // squeeze in grouping separators if (pic.group[0].length == 1 && pic.group[0][0] > 0) { // regular pattern with repeating separators for (int p = intgr.size() - (neg ? 2 : 1); p > 0; --p) { if (p % pic.group[0][0] == 0) intgr.insert(intgr.size() - p, grouping); } } else { // irregular pattern, or no separators at all final int gl = pic.group[0].length; for (int g = 0; g < gl; ++g) { final int pos = intgr.size() - pic.group[0][g]; if (pos > 0) intgr.insert(pos, grouping); } } // create fractional part final int fl = sep == -1 ? 0 : sl - il - 1; if (fl != 0) for (int i = sep + 1; i < sl; i++) fract.add(zero + s.charAt(i) - '0'); for (int i = fl; i < pic.min[1]; ++i) fract.add(zero); // squeeze in grouping separators in a reverse manner final int ul = fract.size(); for (int p = pic.group[1].length - 1; p >= 0; p--) { final int pos = pic.group[1][p]; if (pos < ul) fract.insert(pos, grouping); } } // add minus sign if (neg && pics.length != 2) res.add(minus); // add prefix and integer part res.add(pic.prefSuf[0].toArray()).add(intgr.finish()); // add fractional part if (!fract.isEmpty()) res.add(decimal).add(fract.finish()); // add exponent if (pic.minExp != 0) { res.add(exponent); if (exp < 0) res.add(minus); final String s = Integer.toString(Math.abs(exp)); final int sl = s.length(); for (int i = sl; i < pic.minExp; i++) res.add(zero); for (int i = 0; i < sl; i++) res.add(zero + s.charAt(i) - '0'); } // add suffix res.add(pic.prefSuf[1].toArray()); return new TokenBuilder(res.finish()).finish(); }