/** * Evaluates the full-text match. * * @param qc query context * @return number of tokens, used for scoring * @throws QueryException query exception */ private int contains(final QueryContext qc) throws QueryException { first = true; final FTLexer lexer = ftt.lexer(qc.ftToken); // use faster evaluation for default options int num = 0; if (fast) { for (final byte[] t : tokens) { final FTTokens qtok = ftt.cache(t); num = Math.max(num, ftt.contains(qtok, lexer) * qtok.length()); } return num; } // find and count all occurrences final boolean all = mode == FTMode.ALL || mode == FTMode.ALL_WORDS; int oc = 0; for (final byte[] w : unique(tokens(qc))) { final FTTokens qtok = ftt.cache(w); final int o = ftt.contains(qtok, lexer); if (all && o == 0) return 0; num = Math.max(num, o * qtok.length()); oc += o; } // check if occurrences are in valid range. if yes, return number of tokens final long mn = occ != null ? toLong(occ[0], qc) : 1; final long mx = occ != null ? toLong(occ[1], qc) : Long.MAX_VALUE; if (mn == 0 && oc == 0) matches = FTNot.not(matches); return oc >= mn && oc <= mx ? Math.max(1, num) : 0; }
/** * Algorithm of Tarjan for computing the strongly connected components of a graph. * * @param v current node * @throws QueryException if a variable directly calls itself */ private void tarjan(final int v) throws QueryException { final int ixv = 2 * v, llv = ixv + 1, idx = next++; while (list.size() <= llv) list.add(-1); list.set(ixv, idx); list.set(llv, idx); stack.push(v); for (final int w : adjacentTo(v)) { final int ixw = 2 * w, llw = ixw + 1; if (list.size() <= ixw || list.get(ixw) < 0) { // Successor w has not yet been visited; recurse on it tarjan(w); list.set(llv, Math.min(list.get(llv), list.get(llw))); } else if (stack.contains(w)) { // Successor w is in stack S and hence in the current SCC list.set(llv, Math.min(list.get(llv), list.get(ixw))); } } // If v is a root node, pop the stack and generate an SCC if (list.get(llv) == list.get(ixv)) { int w; Scope[] out = null; do { w = stack.pop(); final Scope scp = scopes.get(w); out = out == null ? new Scope[] {scp} : Array.add(out, scp); } while (w != v); result.add(out); } }
@Override public boolean indexAccessible(final IndexInfo ii) { /* If the following conditions yield true, the index is accessed: * - all query terms are statically available * - no FTTimes option is specified * - explicitly set case, diacritics and stemming match options do not * conflict with index options. */ data = ii.ic.data; final MetaData md = data.meta; final FTOpt fto = ftt.opt; /* Index will be applied if no explicit match options have been set * that conflict with the index options. As a consequence, though, index- * based querying might yield other results than sequential scanning. */ if (occ != null || fto.cs != null && md.casesens == (fto.cs == FTCase.INSENSITIVE) || fto.isSet(DC) && md.diacritics != fto.is(DC) || fto.isSet(ST) && md.stemming != fto.is(ST) || fto.ln != null && !fto.ln.equals(md.language)) return false; // adopt database options to tokenizer fto.copy(md); // estimate costs if text is not known at compile time if (tokens == null) { ii.costs = Math.max(2, data.meta.size / 30); return true; } // summarize number of hits; break loop if no hits are expected final FTLexer ft = new FTLexer(fto); ii.costs = 0; for (byte[] t : tokens) { ft.init(t); while (ft.hasNext()) { final byte[] tok = ft.nextToken(); if (fto.sw != null && fto.sw.contains(tok)) continue; if (fto.is(WC)) { // don't use index if one of the terms starts with a wildcard t = ft.get(); if (t[0] == '.') return false; // don't use index if certain characters or more than 1 dot are found int d = 0; for (final byte w : t) { if (w == '{' || w == '\\' || w == '.' && ++d > 1) return false; } } // favor full-text index requests over exact queries final int costs = data.costs(ft); if (costs != 0) ii.costs += Math.max(2, costs / 100); } } return true; }
/** * Merges two matches. * * @param i1 first item * @param i2 second item */ private static void and(final FTNode i1, final FTNode i2) { final FTMatches all = new FTMatches((byte) Math.max(i1.matches().pos, i2.matches().pos)); for (final FTMatch s1 : i1.matches()) { for (final FTMatch s2 : i2.matches()) { all.add(new FTMatch(s1.size() + s2.size()).add(s1).add(s2)); } } i1.score(Scoring.avg(i1.score() + i2.score(), 2)); i1.matches(all); }
/** * Compiles the filter expression, excluding the root node. * * @param ctx query context * @return compiled expression */ private Expr opt(final QueryContext ctx) { // evaluate return type final SeqType t = root.type(); // determine number of results and type final long s = root.size(); if (s != -1) { if (pos != null) { size = Math.max(0, s + 1 - pos.min) - Math.max(0, s - pos.max); } else if (last) { size = s > 0 ? 1 : 0; } // no results will remain: return empty sequence if (size == 0) return optPre(null, ctx); type = SeqType.get(t.type, size); } else { type = SeqType.get(t.type, t.zeroOrOne() ? Occ.ZERO_ONE : Occ.ZERO_MORE); } // no numeric predicates.. use simple iterator if (!super.has(Flag.FCS)) return new IterFilter(this); // one single position() or last() function specified: return single value if (preds.length == 1 && (last || pos != null) && root.isValue() && t.one() && (last || pos.min == 1 && pos.max == 1)) return optPre(root, ctx); // only choose deterministic and context-independent offsets; e.g., skip: // (1 to 10)[random:integer(10)] or (1 to 10)[.] boolean off = false; if (preds.length == 1) { final Expr p = preds[0]; final SeqType st = p.type(); off = st.type.isNumber() && st.zeroOrOne() && !p.has(Flag.CTX) && !p.has(Flag.NDT); if (off) type = SeqType.get(type.type, Occ.ZERO_ONE); } // iterator for simple numeric predicate return off || useIterator() ? new IterPosFilter(this, off) : this; }
@Override void calcSize(final long[] minMax) { minMax[0] = Math.min(minMax[0], 1); }