/** * Returns all summary path nodes for the specified location step or {@code null} if nodes cannot * be retrieved or are found on different levels. * * @param data data reference * @param last last step to be checked * @return path nodes */ private ArrayList<PathNode> pathNodes(final Data data, final int last) { // skip request if no path index exists or might be out-of-date if (!data.meta.uptodate) return null; ArrayList<PathNode> nodes = data.paths.root(); for (int s = 0; s <= last; s++) { // only follow axis steps final Step curr = axisStep(s); if (curr == null) return null; final boolean desc = curr.axis == DESC; if (!desc && curr.axis != CHILD || curr.test.kind != Kind.NAME) return null; final int name = data.elemNames.id(curr.test.name.local()); final ArrayList<PathNode> tmp = new ArrayList<>(); for (final PathNode node : PathSummary.desc(nodes, desc)) { if (node.kind == Data.ELEM && name == node.name) { // skip test if an element name occurs on different levels if (!tmp.isEmpty() && tmp.get(0).level() != node.level()) return null; tmp.add(node); } } if (tmp.isEmpty()) return null; nodes = tmp; } return nodes; }
/** * Algorithm of Tarjan for computing the strongly connected components of a graph. * * @param v current node * @throws QueryException if a variable directly calls itself */ private void tarjan(final int v) throws QueryException { final int ixv = 2 * v, llv = ixv + 1, idx = next++; while (list.size() <= llv) list.add(-1); list.set(ixv, idx); list.set(llv, idx); stack.push(v); for (final int w : adjacentTo(v)) { final int ixw = 2 * w, llw = ixw + 1; if (list.size() <= ixw || list.get(ixw) < 0) { // Successor w has not yet been visited; recurse on it tarjan(w); list.set(llv, Math.min(list.get(llv), list.get(llw))); } else if (stack.contains(w)) { // Successor w is in stack S and hence in the current SCC list.set(llv, Math.min(list.get(llv), list.get(ixw))); } } // If v is a root node, pop the stack and generate an SCC if (list.get(llv) == list.get(ixv)) { int w; Scope[] out = null; do { w = stack.pop(); final Scope scp = scopes.get(w); out = out == null ? new Scope[] {scp} : Array.add(out, scp); } while (w != v); result.add(out); } }
/** * Performs the test-uris function. * * @param ctx query context * @return resulting value * @throws QueryException query exception */ private Item testUris(final QueryContext ctx) throws QueryException { checkCreate(ctx); final ArrayList<IO> inputs = new ArrayList<>(); final Iter ir = ctx.iter(expr[0]); for (Item it; (it = ir.next()) != null; ) inputs.add(checkPath(it, ctx)); return new Suite(ctx, info).test(inputs); }
/** * Returns all summary path nodes for the specified location step or {@code null} if nodes cannot * be retrieved or are found on different levels. * * @param data data reference * @param l last step to be checked * @return path nodes */ ArrayList<PathNode> pathNodes(final Data data, final int l) { // skip request if no path index exists or might be out-of-date if (!data.meta.uptodate) return null; ArrayList<PathNode> in = data.paths.root(); for (int s = 0; s <= l; ++s) { final Step curr = axisStep(s); if (curr == null) return null; final boolean desc = curr.axis == DESC; if (!desc && curr.axis != CHILD || curr.test.mode != Mode.LN) return null; final int name = data.tagindex.id(curr.test.name.local()); final ArrayList<PathNode> al = new ArrayList<>(); for (final PathNode pn : PathSummary.desc(in, desc)) { if (pn.kind == Data.ELEM && name == pn.name) { // skip test if a tag is found on different levels if (!al.isEmpty() && al.get(0).level() != pn.level()) return null; al.add(pn); } } if (al.isEmpty()) return null; in = al; } return in; }
/** * Returns the indices of all scopes called by the given one. * * @param node source node index * @return destination node indices * @throws QueryException if a variable directly calls itself */ private int[] adjacentTo(final int node) throws QueryException { int[] adj = adjacent.get(node); if (adj == null) { adj = neighbors(scopes.get(node)); adjacent.set(node, adj); } return adj; }
/** * Converts descendant to child steps. * * @param qc query context * @param rt root value * @return original or new expression */ private Expr children(final QueryContext qc, final Value rt) { // skip if index does not exist or is out-dated, or if several namespaces occur in the input final Data data = rt.data(); if (data == null || !data.meta.uptodate || data.nspaces.globalNS() == null) return this; Path path = this; final int sl = steps.length; for (int s = 0; s < sl; s++) { // don't allow predicates in preceding location steps final Step prev = s > 0 ? axisStep(s - 1) : null; if (prev != null && prev.preds.length != 0) break; // ignore axes other than descendant, or numeric predicates final Step curr = axisStep(s); if (curr == null || curr.axis != DESC || curr.has(Flag.FCS)) continue; // check if child steps can be retrieved for current step ArrayList<PathNode> nodes = pathNodes(data, s); if (nodes == null) continue; // cache child steps final ArrayList<QNm> qnm = new ArrayList<>(); while (nodes.get(0).parent != null) { QNm nm = new QNm(data.elemNames.key(nodes.get(0).name)); // skip children with prefixes if (nm.hasPrefix()) return this; for (final PathNode p : nodes) { if (nodes.get(0).name != p.name) nm = null; } qnm.add(nm); nodes = PathSummary.parent(nodes); } qc.compInfo(OPTCHILD, steps[s]); // build new steps int ts = qnm.size(); final Expr[] stps = new Expr[ts + sl - s - 1]; for (int t = 0; t < ts; t++) { final Expr[] preds = t == ts - 1 ? ((Preds) steps[s]).preds : new Expr[0]; final QNm nm = qnm.get(ts - t - 1); final NameTest nt = nm == null ? new NameTest(false) : new NameTest(nm, Kind.NAME, false, null); stps[t] = Step.get(info, CHILD, nt, preds); } while (++s < sl) stps[ts++] = steps[s]; path = get(info, root, stps); break; } // check if all steps yield results; if not, return empty sequence final ArrayList<PathNode> nodes = pathNodes(qc); if (nodes != null && nodes.isEmpty()) { qc.compInfo(OPTPATH, path); return Empty.SEQ; } return path; }
/** * Gets the ID of the given scope. * * @param scp scope * @return id if existing, {@code null} otherwise */ private int id(final Scope scp) { if (ids != null) { final Integer id = ids.get(scp); return id == null ? -1 : id; } final int ss = scopes.size(); for (int s = 0; s < ss; s++) if (scopes.get(s) == scp) return s; return -1; }
/** * Adds a new scope and returns its ID. * * @param scp scope to add * @return the scope's ID */ private int add(final Scope scp) { final int id = scopes.size(); if (id == MAP_THRESHOLD) { ids = new IdentityHashMap<>(); for (final Scope s : scopes) ids.put(s, ids.size()); } scopes.add(scp); adjacent.add(null); if (ids != null) ids.put(scp, id); return id; }
/** * Performs the test function. * * @param ctx query context * @return resulting value * @throws QueryException query exception */ private Item test(final QueryContext ctx) throws QueryException { final Unit unit = new Unit(ctx, info); if (expr.length == 0) return unit.test(sc); final ArrayList<StaticFunc> funcs = new ArrayList<>(); final Iter ir = ctx.iter(expr[0]); for (Item it; (it = ir.next()) != null; ) { final FItem fi = checkFunc(it, ctx); if (fi.funcName() != null) { final StaticFunc sf = ctx.funcs.get(fi.funcName(), fi.arity(), null, true); if (sf != null) funcs.add(sf); } } return unit.test(sc, funcs); }
/** * Checks if steps before index step need to be inverted and traversed. * * @param data data reference * @param iStep index step * @return result of check */ private boolean predSteps(final Data data, final int iStep) { for (int s = iStep; s >= 0; s--) { final Step step = axisStep(s); // ensure that the index step does not use wildcard if (step.test.kind == Kind.WILDCARD && s != iStep) continue; // consider child steps with name test and without predicates if (step.test.kind != Kind.NAME || step.axis != Axis.CHILD || s != iStep && step.preds.length > 0) return true; // support only unique paths with nodes on the correct level final ArrayList<PathNode> pn = data.paths.desc(step.test.name.local()); if (pn.size() != 1 || pn.get(0).level() != s + 1) return true; } return false; }
/** * Returns the strongly connected components of the dependency graph. * * @param p ID of the starting point * @return the components * @throws QueryException if a variable directly calls itself */ private Iterable<Scope[]> components(final int p) throws QueryException { result.clear(); tarjan(p); return result; }
/** * Binds the annotated variables. * * @param http http context * @param arg argument array * @throws QueryException query exception * @throws IOException I/O exception */ void bind(final HTTPContext http, final Expr[] arg) throws QueryException, IOException { // bind variables from segments for (int s = 0; s < path.size; s++) { final Matcher m = TEMPLATE.matcher(path.segment[s]); if (!m.find()) continue; final QNm qnm = new QNm(token(m.group(1)), context); bind(qnm, arg, new Atm(http.segment(s))); } // cache request body final String ct = http.contentType(); IOContent body = null; if (requestBody != null) { body = cache(http, null); try { // bind request body in the correct format body.name(http.method + IO.XMLSUFFIX); bind(requestBody, arg, Parser.item(body, context.context.prop, ct)); } catch (final IOException ex) { error(INPUT_CONV, ex); } } // bind query parameters final Map<String, String[]> params = http.params(); for (final RestXqParam rxp : queryParams) bind(rxp, arg, params.get(rxp.key)); // bind form parameters if (!formParams.isEmpty()) { if (MimeTypes.APP_FORM.equals(ct)) { // convert parameters encoded in a form body = cache(http, body); addParams(body.toString(), params); } for (final RestXqParam rxp : formParams) bind(rxp, arg, params.get(rxp.key)); } // bind header parameters for (final RestXqParam rxp : headerParams) { final StringList sl = new StringList(); final Enumeration<?> en = http.req.getHeaders(rxp.key); while (en.hasMoreElements()) { for (final String s : en.nextElement().toString().split(", *")) sl.add(s); } bind(rxp, arg, sl.toArray()); } // bind cookie parameters final Cookie[] ck = http.req.getCookies(); for (final RestXqParam rxp : cookieParams) { String v = null; if (ck != null) { for (final Cookie c : ck) { if (rxp.key.equals(c.getName())) v = c.getValue(); } } if (v == null) bind(rxp, arg); else bind(rxp, arg, v); } }
/** * Checks a function for RESTFful annotations. * * @return {@code true} if module contains relevant annotations * @throws QueryException query exception */ boolean analyze() throws QueryException { // parse all annotations final EnumSet<HTTPMethod> mth = EnumSet.noneOf(HTTPMethod.class); final boolean[] declared = new boolean[function.args.length]; boolean found = false; final int as = function.ann.size(); for (int a = 0; a < as; a++) { final QNm name = function.ann.names[a]; final Value value = function.ann.values[a]; final byte[] local = name.local(); final byte[] uri = name.uri(); final boolean rexq = eq(uri, QueryText.RESTXQURI); if (rexq) { if (eq(PATH, local)) { // annotation "path" if (path != null) error(ANN_TWICE, "%", name.string()); path = new RestXqPath(toString(value, name)); for (final String s : path) { if (s.trim().startsWith("{")) checkVariable(s, AtomType.AAT, declared); } } else if (eq(CONSUMES, local)) { // annotation "consumes" strings(value, name, consumes); } else if (eq(PRODUCES, local)) { // annotation "produces" strings(value, name, produces); } else if (eq(QUERY_PARAM, local)) { // annotation "query-param" queryParams.add(param(value, name, declared)); } else if (eq(FORM_PARAM, local)) { // annotation "form-param" formParams.add(param(value, name, declared)); } else if (eq(HEADER_PARAM, local)) { // annotation "header-param" headerParams.add(param(value, name, declared)); } else if (eq(COOKIE_PARAM, local)) { // annotation "cookie-param" cookieParams.add(param(value, name, declared)); } else { // method annotations final HTTPMethod m = HTTPMethod.get(string(local)); if (m == null) error(ANN_UNKNOWN, "%", name.string()); if (!value.isEmpty()) { // remember post/put variable if (requestBody != null) error(ANN_TWICE, "%", name.string()); if (m != POST && m != PUT) error(METHOD_VALUE, m); requestBody = checkVariable(toString(value, name), declared); } if (mth.contains(m)) error(ANN_TWICE, "%", name.string()); mth.add(m); } } else if (eq(uri, QueryText.OUTPUTURI)) { // serialization parameters final String key = string(local); final String val = toString(value, name); if (output.get(key) == null) error(UNKNOWN_SER, key); output.set(key, val); } found |= rexq; } if (!mth.isEmpty()) methods = mth; if (found) { if (path == null) error(ANN_MISSING, PATH); for (int i = 0; i < declared.length; i++) if (!declared[i]) error(VAR_UNDEFINED, function.args[i].name.string()); } return found; }
/** * Converts descendant to child steps. * * @param ctx query context * @param data data reference * @return path */ Expr children(final QueryContext ctx, final Data data) { // skip path check if no path index exists, or if it is out-of-date if (!data.meta.uptodate || data.nspaces.globalNS() == null) return this; Path path = this; for (int s = 0; s < steps.length; ++s) { // don't allow predicates in preceding location steps final Step prev = s > 0 ? axisStep(s - 1) : null; if (prev != null && prev.preds.length != 0) break; // ignore axes other than descendant, or numeric predicates final Step curr = axisStep(s); if (curr == null || curr.axis != DESC || curr.has(Flag.FCS)) continue; // check if child steps can be retrieved for current step ArrayList<PathNode> pn = pathNodes(data, s); if (pn == null) continue; // cache child steps final ArrayList<QNm> qnm = new ArrayList<>(); while (pn.get(0).par != null) { QNm nm = new QNm(data.tagindex.key(pn.get(0).name)); // skip children with prefixes if (nm.hasPrefix()) return this; for (final PathNode p : pn) { if (pn.get(0).name != p.name) nm = null; } qnm.add(nm); pn = PathSummary.parent(pn); } ctx.compInfo(OPTCHILD, steps[s]); // build new steps int ts = qnm.size(); final Expr[] stps = new Expr[ts + steps.length - s - 1]; for (int t = 0; t < ts; ++t) { final Expr[] preds = t == ts - 1 ? ((Preds) steps[s]).preds : new Expr[0]; final QNm nm = qnm.get(ts - t - 1); final NameTest nt = nm == null ? new NameTest(false) : new NameTest(nm, Mode.LN, false, null); stps[t] = Step.get(info, CHILD, nt, preds); } while (++s < steps.length) stps[ts++] = steps[s]; path = get(info, root, stps); break; } // check if the all children in the path exist; don't test with namespaces if (data.nspaces.size() == 0) { LOOP: for (int s = 0; s < path.steps.length; ++s) { // only verify child steps; ignore namespaces final Step st = path.axisStep(s); if (st == null || st.axis != CHILD) break; if (st.test.mode == Mode.ALL || st.test.mode == null) continue; if (st.test.mode != Mode.LN) break; // check if one of the addressed nodes is on the correct level final int name = data.tagindex.id(st.test.name.local()); for (final PathNode pn : data.paths.desc(name, Data.ELEM)) { if (pn.level() == s + 1) continue LOOP; } ctx.compInfo(OPTPATH, path); return Empty.SEQ; } } return path; }