/**
   * This function will get slice of the input frame block overlapping in overall slice(Range),
   * slice has requested for.
   *
   * @param val
   * @param range
   * @param brlen
   * @param bclen
   * @param outlist
   * @throws DMLRuntimeException
   */
  public static void performSlice(
      Pair<Long, FrameBlock> in,
      IndexRange ixrange,
      int brlen,
      int bclen,
      ArrayList<Pair<Long, FrameBlock>> outlist)
      throws DMLRuntimeException {
    long index = in.getKey();
    FrameBlock block = in.getValue();

    // Get Block indexes (rows and columns boundaries)
    long cellIndexTopRow = index;
    long cellIndexBottomRow = index + block.getNumRows() - 1;
    long cellIndexLeftCol = 1;
    long cellIndexRightCol = block.getNumColumns();

    // Calculate block boundaries with range of slice to be performed (Global index)
    long cellIndexOverlapTop = Math.max(cellIndexTopRow, ixrange.rowStart);
    long cellIndexOverlapBottom = Math.min(cellIndexBottomRow, ixrange.rowEnd);
    long cellIndexOverlapLeft = Math.max(cellIndexLeftCol, ixrange.colStart);
    long cellIndexOverlapRight = Math.min(cellIndexRightCol, ixrange.colEnd);

    // check if block is outside the indexing range
    if (cellIndexOverlapTop > cellIndexOverlapBottom
        || cellIndexOverlapLeft > cellIndexOverlapRight) {
      return;
    }

    // Create IndexRange for the slice to be performed on this block.
    IndexRange tmpRange =
        new IndexRange(
            cellIndexOverlapTop - index,
            cellIndexOverlapBottom - index,
            cellIndexOverlapLeft - 1,
            cellIndexOverlapRight - 1);

    // Get Top Row and Left column cutting point.
    int rowCut = (int) (ixrange.rowStart - index);

    // Get indices for result block
    long resultBlockIndexTop = UtilFunctions.computeBlockIndex(cellIndexOverlapTop, brlen);
    long resultBlockIndexBottom = UtilFunctions.computeBlockIndex(cellIndexOverlapBottom, brlen);

    // allocate space for the output value
    for (long r = resultBlockIndexTop; r <= resultBlockIndexBottom; r++) {
      List<ValueType> schema =
          UtilFunctions.getSubSchema(block.getSchema(), tmpRange.colStart, tmpRange.colEnd);
      long iResultIndex = (r - 1) * brlen + tmpRange.rowStart;
      Pair<Long, FrameBlock> out =
          new Pair<Long, FrameBlock>(new Long(iResultIndex + 1), new FrameBlock(schema));
      outlist.add(out);
    }

    // execute actual slice operation
    block.sliceOperations(outlist, tmpRange, rowCut);
  }
    @Override
    public Iterable<Tuple2<MatrixIndexes, MatrixBlock>> call(
        Tuple2<MatrixIndexes, MatrixBlock> arg0) throws Exception {
      ArrayList<Tuple2<MatrixIndexes, MatrixBlock>> ret =
          new ArrayList<Tuple2<MatrixIndexes, MatrixBlock>>();
      MatrixIndexes ixIn = arg0._1();
      MatrixBlock mb2 = arg0._2();

      // get the right hand side matrix
      MatrixBlock mb1 = _pmV.getMatrixBlock((int) ixIn.getRowIndex(), 1);

      // compute target block indexes
      long minPos = UtilFunctions.toLong(mb1.minNonZero());
      long maxPos = UtilFunctions.toLong(mb1.max());
      long rowIX1 = (minPos - 1) / _brlen + 1;
      long rowIX2 = (maxPos - 1) / _brlen + 1;
      boolean multipleOuts = (rowIX1 != rowIX2);

      if (minPos >= 1) // at least one row selected
      {
        // output sparsity estimate
        double spmb1 = OptimizerUtils.getSparsity(mb1.getNumRows(), 1, mb1.getNonZeros());
        long estnnz = (long) (spmb1 * mb2.getNonZeros());
        boolean sparse = MatrixBlock.evalSparseFormatInMemory(_brlen, mb2.getNumColumns(), estnnz);

        // compute and allocate output blocks
        MatrixBlock out1 = new MatrixBlock();
        MatrixBlock out2 = multipleOuts ? new MatrixBlock() : null;
        out1.reset(_brlen, mb2.getNumColumns(), sparse);
        if (out2 != null)
          out2.reset(
              UtilFunctions.computeBlockSize(_rlen, rowIX2, _brlen), mb2.getNumColumns(), sparse);

        // compute core matrix permutation (assumes that out1 has default blocksize,
        // hence we do a meta data correction afterwards)
        mb1.permutationMatrixMultOperations(mb2, out1, out2);
        out1.setNumRows(UtilFunctions.computeBlockSize(_rlen, rowIX1, _brlen));
        ret.add(
            new Tuple2<MatrixIndexes, MatrixBlock>(
                new MatrixIndexes(rowIX1, ixIn.getColumnIndex()), out1));
        if (out2 != null)
          ret.add(
              new Tuple2<MatrixIndexes, MatrixBlock>(
                  new MatrixIndexes(rowIX2, ixIn.getColumnIndex()), out2));
      }

      return ret;
    }
 public ScalarObject getScalarInput(String name, ValueType vt, boolean isLiteral)
     throws DMLRuntimeException {
   if (isLiteral) {
     switch (vt) {
       case INT:
         long intVal = UtilFunctions.parseToLong(name);
         IntObject intObj = new IntObject(intVal);
         return intObj;
       case DOUBLE:
         double doubleVal = Double.parseDouble(name);
         DoubleObject doubleObj = new DoubleObject(doubleVal);
         return doubleObj;
       case BOOLEAN:
         Boolean boolVal = Boolean.parseBoolean(name);
         BooleanObject boolObj = new BooleanObject(boolVal);
         return boolObj;
       case STRING:
         StringObject stringObj = new StringObject(name);
         return stringObj;
       default:
         throw new DMLRuntimeException("Unknown value type: " + vt + " for variable: " + name);
     }
   } else {
     Data obj = getVariable(name);
     if (obj == null) {
       throw new DMLRuntimeException("Unknown variable: " + name);
     }
     return (ScalarObject) obj;
   }
 }
  /**
   * @param sqlctx
   * @param mb
   * @param schema
   * @return
   * @throws DMLRuntimeException
   */
  @SuppressWarnings("resource")
  private DataFrame createDataFrame(
      SQLContext sqlctx, MatrixBlock mb, boolean containsID, ValueType[] schema)
      throws DMLRuntimeException {
    // create in-memory list of rows
    List<Row> list = new ArrayList<Row>();
    int off = (containsID ? 1 : 0);
    int clen = mb.getNumColumns() + off - colsVector + 1;

    for (int i = 0; i < mb.getNumRows(); i++) {
      Object[] row = new Object[clen];
      if (containsID) row[0] = i + 1;
      for (int j = 0, j2 = 0; j < mb.getNumColumns(); j++, j2++) {
        if (schema[j2] != ValueType.OBJECT) {
          row[j2 + off] = UtilFunctions.doubleToObject(schema[j2], mb.quickGetValue(i, j));
        } else {
          double[] tmp =
              DataConverter.convertToDoubleVector(
                  mb.sliceOperations(i, i, j, j + colsVector - 1, new MatrixBlock()));
          row[j2 + off] = new DenseVector(tmp);
          j += colsVector - 1;
        }
      }
      list.add(RowFactory.create(row));
    }

    // create data frame schema
    List<StructField> fields = new ArrayList<StructField>();
    if (containsID)
      fields.add(
          DataTypes.createStructField(RDDConverterUtils.DF_ID_COLUMN, DataTypes.DoubleType, true));
    for (int j = 0; j < schema.length; j++) {
      DataType dt = null;
      switch (schema[j]) {
        case STRING:
          dt = DataTypes.StringType;
          break;
        case DOUBLE:
          dt = DataTypes.DoubleType;
          break;
        case INT:
          dt = DataTypes.LongType;
          break;
        case OBJECT:
          dt = new VectorUDT();
          break;
        default:
          throw new RuntimeException("Unsupported value type.");
      }
      fields.add(DataTypes.createStructField("C" + (j + 1), dt, true));
    }
    StructType dfSchema = DataTypes.createStructType(fields);

    // create rdd and data frame
    JavaSparkContext sc = new JavaSparkContext(sqlctx.sparkContext());
    JavaRDD<Row> rowRDD = sc.parallelize(list);
    return sqlctx.createDataFrame(rowRDD, dfSchema);
  }
  // Reused by both MR and Spark for performing zero out
  public static IndexRange getSelectedRangeForZeroOut(
      Pair<Long, FrameBlock> in,
      int blockRowFactor,
      int blockColFactor,
      IndexRange indexRange,
      long lSrcRowIndex,
      long lDestRowIndex) {
    int iRowStart, iRowEnd, iColStart, iColEnd;

    if (indexRange.rowStart <= lDestRowIndex) iRowStart = 0;
    else iRowStart = (int) (indexRange.rowStart - in.getKey());
    iRowEnd = (int) Math.min(indexRange.rowEnd - lSrcRowIndex, blockRowFactor) - 1;

    iColStart = UtilFunctions.computeCellInBlock(indexRange.colStart, blockColFactor);
    iColEnd = UtilFunctions.computeCellInBlock(indexRange.colEnd, blockColFactor);

    return new IndexRange(iRowStart, iRowEnd, iColStart, iColEnd);
  }
  /**
   * @param vector
   * @param singleColBlock
   * @param dense
   * @param unknownDims
   */
  private void testDataFrameConversion(
      ValueType[] schema, boolean containsID, boolean dense, boolean unknownDims) {
    boolean oldConfig = DMLScript.USE_LOCAL_SPARK_CONFIG;
    RUNTIME_PLATFORM oldPlatform = DMLScript.rtplatform;

    SparkExecutionContext sec = null;

    try {
      DMLScript.USE_LOCAL_SPARK_CONFIG = true;
      DMLScript.rtplatform = RUNTIME_PLATFORM.HYBRID_SPARK;

      // generate input data and setup metadata
      int cols = schema.length + colsVector - 1;
      double sparsity = dense ? sparsity1 : sparsity2;
      double[][] A = TestUtils.round(getRandomMatrix(rows1, cols, -10, 1000, sparsity, 2373));
      MatrixBlock mbA = DataConverter.convertToMatrixBlock(A);
      int blksz = ConfigurationManager.getBlocksize();
      MatrixCharacteristics mc1 =
          new MatrixCharacteristics(rows1, cols, blksz, blksz, mbA.getNonZeros());
      MatrixCharacteristics mc2 =
          unknownDims ? new MatrixCharacteristics() : new MatrixCharacteristics(mc1);

      // setup spark context
      sec = (SparkExecutionContext) ExecutionContextFactory.createContext();
      JavaSparkContext sc = sec.getSparkContext();
      SQLContext sqlctx = new SQLContext(sc);

      // create input data frame
      DataFrame df = createDataFrame(sqlctx, mbA, containsID, schema);

      // dataframe - frame conversion
      JavaPairRDD<Long, FrameBlock> out =
          FrameRDDConverterUtils.dataFrameToBinaryBlock(sc, df, mc2, containsID);

      // get output frame block
      FrameBlock fbB =
          SparkExecutionContext.toFrameBlock(
              out, UtilFunctions.nCopies(cols, ValueType.DOUBLE), rows1, cols);

      // compare frame blocks
      MatrixBlock mbB = DataConverter.convertToMatrixBlock(fbB);
      double[][] B = DataConverter.convertToDoubleMatrix(mbB);
      TestUtils.compareMatrices(A, B, rows1, cols, eps);
    } catch (Exception ex) {
      throw new RuntimeException(ex);
    } finally {
      sec.close();
      DMLScript.USE_LOCAL_SPARK_CONFIG = oldConfig;
      DMLScript.rtplatform = oldPlatform;
    }
  }
 /**
  * @param vt
  * @param in
  * @param sparse
  * @return
  */
 public static Object doubleToObject(ValueType vt, double in, boolean sparse) {
   if (in == 0 && sparse) return null;
   switch (vt) {
     case STRING:
       return String.valueOf(in);
     case BOOLEAN:
       return (in != 0);
     case INT:
       return UtilFunctions.toLong(in);
     case DOUBLE:
       return in;
     default:
       throw new RuntimeException("Unsupported value type: " + vt);
   }
 }
  @Override
  public MatrixBlock apply(FrameBlock in, MatrixBlock out) {
    for (int j = 0; j < _colList.length; j++) {
      int col = _colList[j] - 1;
      ValueType vt = in.getSchema()[col];
      for (int i = 0; i < in.getNumRows(); i++) {
        Object val = in.get(i, col);
        out.quickSetValue(
            i,
            col,
            (val == null || (vt == ValueType.STRING && val.toString().isEmpty()))
                ? Double.NaN
                : UtilFunctions.objectToDouble(vt, val));
      }
    }

    return out;
  }
  // Reused by both MR and Spark for performing zero out
  public static IndexRange getSelectedRangeForZeroOut(
      IndexedMatrixValue in, int blockRowFactor, int blockColFactor, IndexRange indexRange) {
    IndexRange tempRange = new IndexRange(-1, -1, -1, -1);

    long topBlockRowIndex = UtilFunctions.computeBlockIndex(indexRange.rowStart, blockRowFactor);
    int topRowInTopBlock = UtilFunctions.computeCellInBlock(indexRange.rowStart, blockRowFactor);
    long bottomBlockRowIndex = UtilFunctions.computeBlockIndex(indexRange.rowEnd, blockRowFactor);
    int bottomRowInBottomBlock =
        UtilFunctions.computeCellInBlock(indexRange.rowEnd, blockRowFactor);

    long leftBlockColIndex = UtilFunctions.computeBlockIndex(indexRange.colStart, blockColFactor);
    int leftColInLeftBlock = UtilFunctions.computeCellInBlock(indexRange.colStart, blockColFactor);
    long rightBlockColIndex = UtilFunctions.computeBlockIndex(indexRange.colEnd, blockColFactor);
    int rightColInRightBlock = UtilFunctions.computeCellInBlock(indexRange.colEnd, blockColFactor);

    // no overlap
    if (in.getIndexes().getRowIndex() < topBlockRowIndex
        || in.getIndexes().getRowIndex() > bottomBlockRowIndex
        || in.getIndexes().getColumnIndex() < leftBlockColIndex
        || in.getIndexes().getColumnIndex() > rightBlockColIndex) {
      tempRange.set(-1, -1, -1, -1);
      return tempRange;
    }

    // get the index range inside the block
    tempRange.set(0, in.getValue().getNumRows() - 1, 0, in.getValue().getNumColumns() - 1);
    if (topBlockRowIndex == in.getIndexes().getRowIndex()) tempRange.rowStart = topRowInTopBlock;
    if (bottomBlockRowIndex == in.getIndexes().getRowIndex())
      tempRange.rowEnd = bottomRowInBottomBlock;
    if (leftBlockColIndex == in.getIndexes().getColumnIndex())
      tempRange.colStart = leftColInLeftBlock;
    if (rightBlockColIndex == in.getIndexes().getColumnIndex())
      tempRange.colEnd = rightColInRightBlock;

    return tempRange;
  }
 @Override
 public int hashCode() {
   return UtilFunctions.longlongHashCode(_row, _col);
 }
  /**
   * @param in
   * @param ixrange
   * @param brlen
   * @param bclen
   * @param rlen
   * @param clen
   * @param outlist
   * @throws DMLRuntimeException
   */
  public static void performShift(
      Pair<Long, FrameBlock> in,
      IndexRange ixrange,
      int brlenLeft,
      int clenLeft /*, int bclen*/,
      long rlen,
      long clen,
      ArrayList<Pair<Long, FrameBlock>> outlist)
      throws DMLRuntimeException {
    Long ix = in.getKey();
    FrameBlock fb = in.getValue();
    long start_lhs_globalRowIndex = ixrange.rowStart + (ix - 1);
    long start_lhs_globalColIndex = ixrange.colStart;
    long end_lhs_globalRowIndex = start_lhs_globalRowIndex + fb.getNumRows() - 1;
    long end_lhs_globalColIndex = ixrange.colEnd;

    long start_lhs_rowIndex = UtilFunctions.computeBlockIndex(start_lhs_globalRowIndex, brlenLeft);
    long end_lhs_rowIndex = UtilFunctions.computeBlockIndex(end_lhs_globalRowIndex, brlenLeft);

    for (long leftRowIndex = start_lhs_rowIndex; leftRowIndex <= end_lhs_rowIndex; leftRowIndex++) {

      // Calculate global index of right hand side block
      long lhs_rl = Math.max((leftRowIndex - 1) * brlenLeft + 1, start_lhs_globalRowIndex);
      long lhs_ru = Math.min(leftRowIndex * brlenLeft, end_lhs_globalRowIndex);
      long lhs_cl = start_lhs_globalColIndex;
      long lhs_cu = end_lhs_globalColIndex;

      int lhs_lrl = UtilFunctions.computeCellInBlock(lhs_rl, brlenLeft);
      int lhs_lru = UtilFunctions.computeCellInBlock(lhs_ru, brlenLeft);
      int lhs_lcl = (int) lhs_cl - 1;
      int lhs_lcu = (int) lhs_cu - 1;

      long rhs_rl = lhs_rl - (ixrange.rowStart - 1) - (ix - 1);
      long rhs_ru = rhs_rl + (lhs_ru - lhs_rl);
      long rhs_cl = lhs_cl - ixrange.colStart + 1;
      long rhs_cu = rhs_cl + (lhs_cu - lhs_cl);

      // local indices are 0 (zero) based.
      int rhs_lrl = (int) (UtilFunctions.computeCellInBlock(rhs_rl, fb.getNumRows()));
      int rhs_lru = (int) (UtilFunctions.computeCellInBlock(rhs_ru, fb.getNumRows()));
      int rhs_lcl = (int) rhs_cl - 1;
      int rhs_lcu = (int) rhs_cu - 1;

      FrameBlock slicedRHSBlk =
          fb.sliceOperations(rhs_lrl, rhs_lru, rhs_lcl, rhs_lcu, new FrameBlock());

      int lbclen = clenLeft;

      List<ValueType> schemaPartialLeft = Collections.nCopies(lhs_lcl, ValueType.STRING);
      List<ValueType> schemaRHS =
          UtilFunctions.getSubSchema(fb.getSchema(), rhs_lcl, rhs_lcl - lhs_lcl + lhs_lcu);
      List<ValueType> schema = new ArrayList<ValueType>(schemaPartialLeft);
      schema.addAll(schemaRHS);
      List<ValueType> schemaPartialRight =
          Collections.nCopies(lbclen - schema.size(), ValueType.STRING);
      schema.addAll(schemaPartialRight);
      FrameBlock resultBlock = new FrameBlock(schema);
      int iRHSRows =
          (int)
              (leftRowIndex <= rlen / brlenLeft
                  ? brlenLeft
                  : rlen - (rlen / brlenLeft) * brlenLeft);
      resultBlock.ensureAllocatedColumns(iRHSRows);

      resultBlock =
          resultBlock.leftIndexingOperations(
              slicedRHSBlk, lhs_lrl, lhs_lru, lhs_lcl, lhs_lcu, new FrameBlock());
      outlist.add(new Pair<Long, FrameBlock>((leftRowIndex - 1) * brlenLeft + 1, resultBlock));
    }
  }
  /**
   * @param in
   * @param ixrange
   * @param brlen
   * @param bclen
   * @param rlen
   * @param clen
   * @param outlist
   * @throws DMLRuntimeException
   */
  public static void performShift(
      IndexedMatrixValue in,
      IndexRange ixrange,
      int brlen,
      int bclen,
      long rlen,
      long clen,
      ArrayList<IndexedMatrixValue> outlist)
      throws DMLRuntimeException {
    MatrixIndexes ix = in.getIndexes();
    MatrixBlock mb = (MatrixBlock) in.getValue();

    long start_lhs_globalRowIndex = ixrange.rowStart + (ix.getRowIndex() - 1) * brlen;
    long start_lhs_globalColIndex = ixrange.colStart + (ix.getColumnIndex() - 1) * bclen;
    long end_lhs_globalRowIndex = start_lhs_globalRowIndex + mb.getNumRows() - 1;
    long end_lhs_globalColIndex = start_lhs_globalColIndex + mb.getNumColumns() - 1;

    long start_lhs_rowIndex = UtilFunctions.computeBlockIndex(start_lhs_globalRowIndex, brlen);
    long end_lhs_rowIndex = UtilFunctions.computeBlockIndex(end_lhs_globalRowIndex, brlen);
    long start_lhs_colIndex = UtilFunctions.computeBlockIndex(start_lhs_globalColIndex, bclen);
    long end_lhs_colIndex = UtilFunctions.computeBlockIndex(end_lhs_globalColIndex, bclen);

    for (long leftRowIndex = start_lhs_rowIndex; leftRowIndex <= end_lhs_rowIndex; leftRowIndex++) {
      for (long leftColIndex = start_lhs_colIndex;
          leftColIndex <= end_lhs_colIndex;
          leftColIndex++) {

        // Calculate global index of right hand side block
        long lhs_rl = Math.max((leftRowIndex - 1) * brlen + 1, start_lhs_globalRowIndex);
        long lhs_ru = Math.min(leftRowIndex * brlen, end_lhs_globalRowIndex);
        long lhs_cl = Math.max((leftColIndex - 1) * bclen + 1, start_lhs_globalColIndex);
        long lhs_cu = Math.min(leftColIndex * bclen, end_lhs_globalColIndex);

        int lhs_lrl = UtilFunctions.computeCellInBlock(lhs_rl, brlen);
        int lhs_lru = UtilFunctions.computeCellInBlock(lhs_ru, brlen);
        int lhs_lcl = UtilFunctions.computeCellInBlock(lhs_cl, bclen);
        int lhs_lcu = UtilFunctions.computeCellInBlock(lhs_cu, bclen);

        long rhs_rl = lhs_rl - ixrange.rowStart + 1;
        long rhs_ru = rhs_rl + (lhs_ru - lhs_rl);
        long rhs_cl = lhs_cl - ixrange.colStart + 1;
        long rhs_cu = rhs_cl + (lhs_cu - lhs_cl);

        int rhs_lrl = UtilFunctions.computeCellInBlock(rhs_rl, brlen);
        int rhs_lru = UtilFunctions.computeCellInBlock(rhs_ru, brlen);
        int rhs_lcl = UtilFunctions.computeCellInBlock(rhs_cl, bclen);
        int rhs_lcu = UtilFunctions.computeCellInBlock(rhs_cu, bclen);

        MatrixBlock slicedRHSBlk =
            mb.sliceOperations(rhs_lrl, rhs_lru, rhs_lcl, rhs_lcu, new MatrixBlock());

        int lbrlen = UtilFunctions.computeBlockSize(rlen, leftRowIndex, brlen);
        int lbclen = UtilFunctions.computeBlockSize(clen, leftColIndex, bclen);
        MatrixBlock resultBlock = new MatrixBlock(lbrlen, lbclen, false);
        resultBlock =
            resultBlock.leftIndexingOperations(
                slicedRHSBlk, lhs_lrl, lhs_lru, lhs_lcl, lhs_lcu, null, UpdateType.COPY);
        outlist.add(
            new IndexedMatrixValue(new MatrixIndexes(leftRowIndex, leftColIndex), resultBlock));
      }
    }
  }
  /**
   * @param val
   * @param range
   * @param brlen
   * @param bclen
   * @param outlist
   * @throws DMLRuntimeException
   */
  public static void performSlice(
      IndexedMatrixValue in,
      IndexRange ixrange,
      int brlen,
      int bclen,
      ArrayList<IndexedMatrixValue> outlist)
      throws DMLRuntimeException {
    long cellIndexTopRow = UtilFunctions.computeCellIndex(in.getIndexes().getRowIndex(), brlen, 0);
    long cellIndexBottomRow =
        UtilFunctions.computeCellIndex(
            in.getIndexes().getRowIndex(), brlen, in.getValue().getNumRows() - 1);
    long cellIndexLeftCol =
        UtilFunctions.computeCellIndex(in.getIndexes().getColumnIndex(), bclen, 0);
    long cellIndexRightCol =
        UtilFunctions.computeCellIndex(
            in.getIndexes().getColumnIndex(), bclen, in.getValue().getNumColumns() - 1);

    long cellIndexOverlapTop = Math.max(cellIndexTopRow, ixrange.rowStart);
    long cellIndexOverlapBottom = Math.min(cellIndexBottomRow, ixrange.rowEnd);
    long cellIndexOverlapLeft = Math.max(cellIndexLeftCol, ixrange.colStart);
    long cellIndexOverlapRight = Math.min(cellIndexRightCol, ixrange.colEnd);

    // check if block is outside the indexing range
    if (cellIndexOverlapTop > cellIndexOverlapBottom
        || cellIndexOverlapLeft > cellIndexOverlapRight) {
      return;
    }

    IndexRange tmpRange =
        new IndexRange(
            UtilFunctions.computeCellInBlock(cellIndexOverlapTop, brlen),
            UtilFunctions.computeCellInBlock(cellIndexOverlapBottom, brlen),
            UtilFunctions.computeCellInBlock(cellIndexOverlapLeft, bclen),
            UtilFunctions.computeCellInBlock(cellIndexOverlapRight, bclen));

    int rowCut = UtilFunctions.computeCellInBlock(ixrange.rowStart, brlen);
    int colCut = UtilFunctions.computeCellInBlock(ixrange.colStart, bclen);

    int rowsInLastBlock = (int) ((ixrange.rowEnd - ixrange.rowStart + 1) % brlen);
    if (rowsInLastBlock == 0) rowsInLastBlock = brlen;
    int colsInLastBlock = (int) ((ixrange.colEnd - ixrange.colStart + 1) % bclen);
    if (colsInLastBlock == 0) colsInLastBlock = bclen;

    long resultBlockIndexTop =
        UtilFunctions.computeBlockIndex(cellIndexOverlapTop - ixrange.rowStart + 1, brlen);
    long resultBlockIndexBottom =
        UtilFunctions.computeBlockIndex(cellIndexOverlapBottom - ixrange.rowStart + 1, brlen);
    long resultBlockIndexLeft =
        UtilFunctions.computeBlockIndex(cellIndexOverlapLeft - ixrange.colStart + 1, bclen);
    long resultBlockIndexRight =
        UtilFunctions.computeBlockIndex(cellIndexOverlapRight - ixrange.colStart + 1, bclen);

    int boundaryRlen = brlen;
    int boundaryClen = bclen;
    long finalBlockIndexBottom =
        UtilFunctions.computeBlockIndex(ixrange.rowEnd - ixrange.rowStart + 1, brlen);
    long finalBlockIndexRight =
        UtilFunctions.computeBlockIndex(ixrange.colEnd - ixrange.colStart + 1, bclen);
    if (resultBlockIndexBottom == finalBlockIndexBottom) boundaryRlen = rowsInLastBlock;
    if (resultBlockIndexRight == finalBlockIndexRight) boundaryClen = colsInLastBlock;

    // allocate space for the output value
    for (long r = resultBlockIndexTop; r <= resultBlockIndexBottom; r++)
      for (long c = resultBlockIndexLeft; c <= resultBlockIndexRight; c++) {
        IndexedMatrixValue out = new IndexedMatrixValue(new MatrixIndexes(), new MatrixBlock());
        out.getIndexes().setIndexes(r, c);
        outlist.add(out);
      }

    // execute actual slice operation
    in.getValue()
        .sliceOperations(
            outlist, tmpRange, rowCut, colCut, brlen, bclen, boundaryRlen, boundaryClen);
  }
Esempio n. 14
0
 public static long getLengthForInterQuantile(NumItemsByEachReducerMetaData metadata, double p) {
   long total = UtilFunctions.getTotalLength(metadata);
   long lpos = (long) Math.ceil(total * p); // lower bound is inclusive
   long upos = (long) Math.ceil(total * (1 - p)); // upper bound is inclusive
   return upos - lpos + 1;
 }