static void mainToOutput(String[] args, PrintWriter output) throws Exception { if (parseArgs(args)) { if (!showAuc && !showConfusion && !showScores) { showAuc = true; showConfusion = true; } Auc collector = new Auc(); LogisticModelParameters lmp = LogisticModelParameters.loadFrom(new File(modelFile)); CsvRecordFactory csv = lmp.getCsvRecordFactory(); OnlineLogisticRegression lr = lmp.createRegression(); BufferedReader in = TrainLogistic.open(inputFile); String line = in.readLine(); csv.firstLine(line); line = in.readLine(); if (showScores) { output.println("\"target\",\"model-output\",\"log-likelihood\""); } while (line != null) { Vector v = new SequentialAccessSparseVector(lmp.getNumFeatures()); int target = csv.processLine(line, v); double score = lr.classifyScalar(v); if (showScores) { output.printf( Locale.ENGLISH, "%d,%.3f,%.6f%n", target, score, lr.logLikelihood(target, v)); } collector.add(target, score); line = in.readLine(); } if (showAuc) { output.printf(Locale.ENGLISH, "AUC = %.2f%n", collector.auc()); } if (showConfusion) { Matrix m = collector.confusion(); output.printf( Locale.ENGLISH, "confusion: [[%.1f, %.1f], [%.1f, %.1f]]%n", m.get(0, 0), m.get(1, 0), m.get(0, 1), m.get(1, 1)); m = collector.entropy(); output.printf( Locale.ENGLISH, "entropy: [[%.1f, %.1f], [%.1f, %.1f]]%n", m.get(0, 0), m.get(1, 0), m.get(0, 1), m.get(1, 1)); } } }
@Override public double getLoss( List<? extends AbstractInstance> crossValSet, PredictiveModel predictiveModel) { Auc auc = new Auc(); for (AbstractInstance instance : crossValSet) { auc.add( (Double) instance.getClassification() == 1.0 ? 1 : 0, predictiveModel.getProbability(instance.getAttributes(), 1.0)); } return 1 - auc.auc(); }