@Override
  public Explanation explain(AtomicReaderContext context, int doc) throws IOException {
    Scorer scorer = scorer(context, true, false, context.reader().getLiveDocs());
    if (scorer != null) {
      int newDoc = scorer.advance(doc);
      if (newDoc == doc) {
        float freq = scorer.freq();
        SloppySimScorer docScorer = similarity.sloppySimScorer(stats, context);
        ComplexExplanation result = new ComplexExplanation();
        result.setDescription(
            "weight("
                + getQuery()
                + " in "
                + doc
                + ") ["
                + similarity.getClass().getSimpleName()
                + "], result of:");
        Explanation scoreExplanation =
            docScorer.explain(doc, new Explanation(freq, "phraseFreq=" + freq));
        result.addDetail(scoreExplanation);
        result.setValue(scoreExplanation.getValue());
        result.setMatch(true);
        return result;
      }
    }

    return new ComplexExplanation(false, 0.0f, "no matching term");
  }
 @Override
 public int advance(int target) throws IOException {
   int doc = subQueryScorer.advance(target);
   if (doc != NO_MORE_DOCS) {
     for (int i = 0; i < valSrcScorers.length; i++) {
       valSrcScorers[i].advance(doc);
     }
   }
   return doc;
 }
    @Override
    public Explanation explain(AtomicReaderContext context, int doc) throws IOException {
      Scorer scorer = scorer(context, context.reader().getLiveDocs());
      if (scorer != null) {
        int newDoc = scorer.advance(doc);
        if (newDoc == doc) {
          float score = scorer.score();
          ComplexExplanation result = new ComplexExplanation();
          result.setDescription("ImageHashLimitQuery, product of:");
          result.setValue(score);
          if (getBoost() != 1.0f) {
            result.addDetail(new Explanation(getBoost(), "boost"));
            score = score / getBoost();
          }
          result.addDetail(new Explanation(score, "image score (1/distance)"));
          result.setMatch(true);
          return result;
        }
      }

      return new ComplexExplanation(false, 0.0f, "no matching term");
    }
 @Override
 public int advance(int target) throws IOException {
   return scorer.advance(target);
 }
Esempio n. 5
0
 /** not a direct test of NearSpans, but a demonstration of how/when this causes problems */
 public void testSpanNearScorerSkipTo1() throws Exception {
   SpanNearQuery q = makeQuery();
   Weight w = q.weight(searcher);
   Scorer s = w.scorer(searcher.getIndexReader(), true, false);
   assertEquals(1, s.advance(1));
 }
Esempio n. 6
0
  /** Used when drill downs are highly constraining vs baseQuery. */
  private void doDrillDownAdvanceScoring(
      Bits acceptDocs, LeafCollector collector, DocsAndCost[] dims) throws IOException {
    final int maxDoc = context.reader().maxDoc();
    final int numDims = dims.length;

    // if (DEBUG) {
    //  System.out.println("  doDrillDownAdvanceScoring");
    // }

    // TODO: maybe a class like BS, instead of parallel arrays
    int[] filledSlots = new int[CHUNK];
    int[] docIDs = new int[CHUNK];
    float[] scores = new float[CHUNK];
    int[] missingDims = new int[CHUNK];
    int[] counts = new int[CHUNK];

    docIDs[0] = -1;
    int nextChunkStart = CHUNK;

    final FixedBitSet seen = new FixedBitSet(CHUNK);

    while (true) {
      // if (DEBUG) {
      //  System.out.println("\ncycle nextChunkStart=" + nextChunkStart + " docIds[0]=" +
      // docIDs[0]);
      // }

      // First dim:
      // if (DEBUG) {
      //  System.out.println("  dim0");
      // }
      DocsAndCost dc = dims[0];
      int docID = dc.approximation.docID();
      while (docID < nextChunkStart) {
        if (acceptDocs == null || acceptDocs.get(docID)) {
          int slot = docID & MASK;

          if (docIDs[slot] != docID && (dc.twoPhase == null || dc.twoPhase.matches())) {
            seen.set(slot);
            // Mark slot as valid:
            // if (DEBUG) {
            //  System.out.println("    set docID=" + docID + " id=" +
            // context.reader().document(docID).get("id"));
            // }
            docIDs[slot] = docID;
            missingDims[slot] = 1;
            counts[slot] = 1;
          }
        }

        docID = dc.approximation.nextDoc();
      }

      // Second dim:
      // if (DEBUG) {
      //  System.out.println("  dim1");
      // }
      dc = dims[1];
      docID = dc.approximation.docID();
      while (docID < nextChunkStart) {
        if (acceptDocs == null
            || acceptDocs.get(docID) && (dc.twoPhase == null || dc.twoPhase.matches())) {
          int slot = docID & MASK;

          if (docIDs[slot] != docID) {
            // Mark slot as valid:
            seen.set(slot);
            // if (DEBUG) {
            //  System.out.println("    set docID=" + docID + " missingDim=0 id=" +
            // context.reader().document(docID).get("id"));
            // }
            docIDs[slot] = docID;
            missingDims[slot] = 0;
            counts[slot] = 1;
          } else {
            // TODO: single-valued dims will always be true
            // below; we could somehow specialize
            if (missingDims[slot] >= 1) {
              missingDims[slot] = 2;
              counts[slot] = 2;
              // if (DEBUG) {
              //  System.out.println("    set docID=" + docID + " missingDim=2 id=" +
              // context.reader().document(docID).get("id"));
              // }
            } else {
              counts[slot] = 1;
              // if (DEBUG) {
              //  System.out.println("    set docID=" + docID + " missingDim=" + missingDims[slot] +
              // " id=" + context.reader().document(docID).get("id"));
              // }
            }
          }
        }

        docID = dc.approximation.nextDoc();
      }

      // After this we can "upgrade" to conjunction, because
      // any doc not seen by either dim 0 or dim 1 cannot be
      // a hit or a near miss:

      // if (DEBUG) {
      //  System.out.println("  baseScorer");
      // }

      // Fold in baseScorer, using advance:
      int filledCount = 0;
      int slot0 = 0;
      while (slot0 < CHUNK && (slot0 = seen.nextSetBit(slot0)) != DocIdSetIterator.NO_MORE_DOCS) {
        int ddDocID = docIDs[slot0];
        assert ddDocID != -1;

        int baseDocID = baseScorer.docID();
        if (baseDocID < ddDocID) {
          baseDocID = baseScorer.advance(ddDocID);
        }
        if (baseDocID == ddDocID) {
          // if (DEBUG) {
          //  System.out.println("    keep docID=" + ddDocID + " id=" +
          // context.reader().document(ddDocID).get("id"));
          // }
          scores[slot0] = baseScorer.score();
          filledSlots[filledCount++] = slot0;
          counts[slot0]++;
        } else {
          // if (DEBUG) {
          //  System.out.println("    no docID=" + ddDocID + " id=" +
          // context.reader().document(ddDocID).get("id"));
          // }
          docIDs[slot0] = -1;

          // TODO: we could jump slot0 forward to the
          // baseDocID ... but we'd need to set docIDs for
          // intervening slots to -1
        }
        slot0++;
      }
      seen.clear(0, CHUNK);

      if (filledCount == 0) {
        if (nextChunkStart >= maxDoc) {
          break;
        }
        nextChunkStart += CHUNK;
        continue;
      }

      // TODO: factor this out & share w/ union scorer,
      // except we start from dim=2 instead:
      for (int dim = 2; dim < numDims; dim++) {
        // if (DEBUG) {
        //  System.out.println("  dim=" + dim + " [" + dims[dim].dim + "]");
        // }
        dc = dims[dim];
        docID = dc.approximation.docID();
        while (docID < nextChunkStart) {
          int slot = docID & MASK;
          if (docIDs[slot] == docID
              && counts[slot] >= dim
              && (dc.twoPhase == null || dc.twoPhase.matches())) {
            // TODO: single-valued dims will always be true
            // below; we could somehow specialize
            if (missingDims[slot] >= dim) {
              // if (DEBUG) {
              //  System.out.println("    set docID=" + docID + " count=" + (dim+2));
              // }
              missingDims[slot] = dim + 1;
              counts[slot] = dim + 2;
            } else {
              // if (DEBUG) {
              //  System.out.println("    set docID=" + docID + " missing count=" + (dim+1));
              // }
              counts[slot] = dim + 1;
            }
          }

          // TODO: sometimes use advance?
          docID = dc.approximation.nextDoc();
        }
      }

      // Collect:
      // if (DEBUG) {
      //  System.out.println("  now collect: " + filledCount + " hits");
      // }
      for (int i = 0; i < filledCount; i++) {
        int slot = filledSlots[i];
        collectDocID = docIDs[slot];
        collectScore = scores[slot];
        // if (DEBUG) {
        //  System.out.println("    docID=" + docIDs[slot] + " count=" + counts[slot]);
        // }
        if (counts[slot] == 1 + numDims) {
          collectHit(collector, dims);
        } else if (counts[slot] == numDims) {
          collectNearMiss(dims[missingDims[slot]].sidewaysLeafCollector);
        }
      }

      if (nextChunkStart >= maxDoc) {
        break;
      }

      nextChunkStart += CHUNK;
    }
  }