private void init(int stripeSize, int paritySize) { assert (stripeSize + paritySize < GF.getFieldSize()); this.stripeSize = stripeSize; this.paritySize = paritySize; this.errSignature = new int[paritySize]; this.paritySymbolLocations = new int[paritySize]; this.dataBuff = new int[paritySize + stripeSize]; for (int i = 0; i < paritySize; i++) { paritySymbolLocations[i] = i; } this.primitivePower = new int[stripeSize + paritySize]; // compute powers of the primitive root for (int i = 0; i < stripeSize + paritySize; i++) { primitivePower[i] = GF.power(PRIMITIVE_ROOT, i); } // compute generating polynomial int[] gen = {1}; int[] poly = new int[2]; for (int i = 0; i < paritySize; i++) { poly[0] = primitivePower[i]; poly[1] = 1; gen = GF.multiply(gen, poly); } // generating polynomial has all generating roots generatingPolynomial = gen; }
@Override public void decode(int[] data, int[] erasedLocation, int[] erasedValue) { if (erasedLocation.length == 0) { return; } assert (erasedLocation.length == erasedValue.length); for (int i = 0; i < erasedLocation.length; i++) { data[erasedLocation[i]] = 0; } for (int i = 0; i < erasedLocation.length; i++) { errSignature[i] = primitivePower[erasedLocation[i]]; erasedValue[i] = GF.substitute(data, primitivePower[i]); } GF.solveVandermondeSystem(errSignature, erasedValue, erasedLocation.length); }
/** * Given parity symbols followed by message symbols, return the locations of symbols that are * corrupted. Can resolve up to (parity length / 2) error locations. * * @param data The message and parity. The parity should be placed in the first part of the array. * In each integer, the relevant portion is present in the least significant bits of each int. * The number of elements in data is stripeSize() + paritySize(). <b>Note that data may be * changed after calling this method.</b> * @param errorLocations The set to put the error location results * @return true If the locations can be resolved, return true. */ public boolean computeErrorLocations(int[] data, Set<Integer> errorLocations) { assert (data.length == paritySize + stripeSize && errorLocations != null); errorLocations.clear(); int maxError = paritySize / 2; int[][] syndromeMatrix = new int[maxError][]; for (int i = 0; i < syndromeMatrix.length; ++i) { syndromeMatrix[i] = new int[maxError + 1]; } int[] syndrome = new int[paritySize]; if (computeSyndrome(data, syndrome)) { // Parity check OK. No error location added. return true; } for (int i = 0; i < maxError; ++i) { for (int j = 0; j < maxError + 1; ++j) { syndromeMatrix[i][j] = syndrome[i + j]; } } GF.gaussianElimination(syndromeMatrix); int[] polynomial = new int[maxError + 1]; polynomial[0] = 1; for (int i = 0; i < maxError; ++i) { polynomial[i + 1] = syndromeMatrix[maxError - 1 - i][maxError]; } for (int i = 0; i < paritySize + stripeSize; ++i) { int possibleRoot = GF.divide(1, primitivePower[i]); if (GF.substitute(polynomial, possibleRoot) == 0) { errorLocations.add(i); } } // Now recover with error locations and check the syndrome again int[] locations = new int[errorLocations.size()]; int k = 0; for (int loc : errorLocations) { locations[k++] = loc; } int[] erasedValue = new int[locations.length]; decode(data, locations, erasedValue); for (int i = 0; i < locations.length; ++i) { data[locations[i]] = erasedValue[i]; } return computeSyndrome(data, syndrome); }
/** * Compute the syndrome of the input [parity, message] * * @param data [parity, message] * @param syndrome The syndromes (checksums) of the data * @return true If syndromes are all zeros */ private boolean computeSyndrome(int[] data, int[] syndrome) { boolean corruptionFound = false; for (int i = 0; i < paritySize; i++) { syndrome[i] = GF.substitute(data, primitivePower[i]); if (syndrome[i] != 0) { corruptionFound = true; } } return !corruptionFound; }
@Override public void encode(int[] message, int[] parity) { assert (message.length == stripeSize && parity.length == paritySize); for (int i = 0; i < paritySize; i++) { dataBuff[i] = 0; } for (int i = 0; i < stripeSize; i++) { dataBuff[i + paritySize] = message[i]; } GF.remainder(dataBuff, generatingPolynomial); for (int i = 0; i < paritySize; i++) { parity[i] = dataBuff[i]; } }
public class ReedSolomonCode extends ErasureCode { public static final Log LOG = LogFactory.getLog(ReedSolomonCode.class); private int stripeSize; private int paritySize; private int[] generatingPolynomial; private int PRIMITIVE_ROOT = 2; private int[] primitivePower; private GaloisField GF = GaloisField.getInstance(); private int[] errSignature; private int[] paritySymbolLocations; private int[] dataBuff; @Deprecated public ReedSolomonCode(int stripeSize, int paritySize) { init(stripeSize, paritySize); } public ReedSolomonCode() {} @Override public void init(Codec codec) { init(codec.stripeLength, codec.parityLength); LOG.info( "Initialized " + ReedSolomonCode.class + " stripeLength:" + codec.stripeLength + " parityLength:" + codec.parityLength); } private void init(int stripeSize, int paritySize) { assert (stripeSize + paritySize < GF.getFieldSize()); this.stripeSize = stripeSize; this.paritySize = paritySize; this.errSignature = new int[paritySize]; this.paritySymbolLocations = new int[paritySize]; this.dataBuff = new int[paritySize + stripeSize]; for (int i = 0; i < paritySize; i++) { paritySymbolLocations[i] = i; } this.primitivePower = new int[stripeSize + paritySize]; // compute powers of the primitive root for (int i = 0; i < stripeSize + paritySize; i++) { primitivePower[i] = GF.power(PRIMITIVE_ROOT, i); } // compute generating polynomial int[] gen = {1}; int[] poly = new int[2]; for (int i = 0; i < paritySize; i++) { poly[0] = primitivePower[i]; poly[1] = 1; gen = GF.multiply(gen, poly); } // generating polynomial has all generating roots generatingPolynomial = gen; } @Override public void encode(int[] message, int[] parity) { assert (message.length == stripeSize && parity.length == paritySize); for (int i = 0; i < paritySize; i++) { dataBuff[i] = 0; } for (int i = 0; i < stripeSize; i++) { dataBuff[i + paritySize] = message[i]; } GF.remainder(dataBuff, generatingPolynomial); for (int i = 0; i < paritySize; i++) { parity[i] = dataBuff[i]; } } @Override public void decode(int[] data, int[] erasedLocation, int[] erasedValue) { if (erasedLocation.length == 0) { return; } assert (erasedLocation.length == erasedValue.length); for (int i = 0; i < erasedLocation.length; i++) { data[erasedLocation[i]] = 0; } for (int i = 0; i < erasedLocation.length; i++) { errSignature[i] = primitivePower[erasedLocation[i]]; erasedValue[i] = GF.substitute(data, primitivePower[i]); } GF.solveVandermondeSystem(errSignature, erasedValue, erasedLocation.length); } @Override public int stripeSize() { return this.stripeSize; } @Override public int paritySize() { return this.paritySize; } @Override public int symbolSize() { return (int) Math.round(Math.log(GF.getFieldSize()) / Math.log(2)); } /** * Given parity symbols followed by message symbols, return the locations of symbols that are * corrupted. Can resolve up to (parity length / 2) error locations. * * @param data The message and parity. The parity should be placed in the first part of the array. * In each integer, the relevant portion is present in the least significant bits of each int. * The number of elements in data is stripeSize() + paritySize(). <b>Note that data may be * changed after calling this method.</b> * @param errorLocations The set to put the error location results * @return true If the locations can be resolved, return true. */ public boolean computeErrorLocations(int[] data, Set<Integer> errorLocations) { assert (data.length == paritySize + stripeSize && errorLocations != null); errorLocations.clear(); int maxError = paritySize / 2; int[][] syndromeMatrix = new int[maxError][]; for (int i = 0; i < syndromeMatrix.length; ++i) { syndromeMatrix[i] = new int[maxError + 1]; } int[] syndrome = new int[paritySize]; if (computeSyndrome(data, syndrome)) { // Parity check OK. No error location added. return true; } for (int i = 0; i < maxError; ++i) { for (int j = 0; j < maxError + 1; ++j) { syndromeMatrix[i][j] = syndrome[i + j]; } } GF.gaussianElimination(syndromeMatrix); int[] polynomial = new int[maxError + 1]; polynomial[0] = 1; for (int i = 0; i < maxError; ++i) { polynomial[i + 1] = syndromeMatrix[maxError - 1 - i][maxError]; } for (int i = 0; i < paritySize + stripeSize; ++i) { int possibleRoot = GF.divide(1, primitivePower[i]); if (GF.substitute(polynomial, possibleRoot) == 0) { errorLocations.add(i); } } // Now recover with error locations and check the syndrome again int[] locations = new int[errorLocations.size()]; int k = 0; for (int loc : errorLocations) { locations[k++] = loc; } int[] erasedValue = new int[locations.length]; decode(data, locations, erasedValue); for (int i = 0; i < locations.length; ++i) { data[locations[i]] = erasedValue[i]; } return computeSyndrome(data, syndrome); } /** * Compute the syndrome of the input [parity, message] * * @param data [parity, message] * @param syndrome The syndromes (checksums) of the data * @return true If syndromes are all zeros */ private boolean computeSyndrome(int[] data, int[] syndrome) { boolean corruptionFound = false; for (int i = 0; i < paritySize; i++) { syndrome[i] = GF.substitute(data, primitivePower[i]); if (syndrome[i] != 0) { corruptionFound = true; } } return !corruptionFound; } }
@Override public int symbolSize() { return (int) Math.round(Math.log(GF.getFieldSize()) / Math.log(2)); }