public static JobControl createValueAggregatorJobs( String args[], Class<? extends ValueAggregatorDescriptor>[] descriptors) throws IOException { JobControl theControl = new JobControl("ValueAggregatorJobs"); ArrayList<Job> dependingJobs = new ArrayList<Job>(); JobConf aJobConf = createValueAggregatorJob(args); if (descriptors != null) setAggregatorDescriptors(aJobConf, descriptors); Job aJob = new Job(aJobConf, dependingJobs); theControl.addJob(aJob); return theControl; }
public static void main(String[] args) throws IOException { if (args.length != 3) { System.out.println("Parameters: inputDir outputDir parallel"); System.exit(1); } String inputDir = args[0]; String outputDir = args[1]; String parallel = args[2]; JobConf lp = new JobConf(L10.class); lp.setJobName("L10 Load Page Views"); lp.setInputFormat(TextInputFormat.class); lp.setOutputKeyClass(MyType.class); lp.setOutputValueClass(Text.class); lp.setMapperClass(ReadPageViews.class); lp.setReducerClass(Group.class); lp.setPartitionerClass(MyPartitioner.class); Properties props = System.getProperties(); for (Map.Entry<Object, Object> entry : props.entrySet()) { lp.set((String) entry.getKey(), (String) entry.getValue()); } FileInputFormat.addInputPath(lp, new Path(inputDir + "/page_views")); FileOutputFormat.setOutputPath(lp, new Path(outputDir + "/L10out")); // Hardcode the parallel to 40 since MyPartitioner assumes it lp.setNumReduceTasks(40); Job group = new Job(lp); JobControl jc = new JobControl("L10 join"); jc.addJob(group); new Thread(jc).start(); int i = 0; while (!jc.allFinished()) { ArrayList<Job> failures = jc.getFailedJobs(); if (failures != null && failures.size() > 0) { for (Job failure : failures) { System.err.println(failure.getMessage()); } break; } try { Thread.sleep(5000); } catch (InterruptedException e) { } if (i % 10000 == 0) { System.out.println("Running jobs"); ArrayList<Job> running = jc.getRunningJobs(); if (running != null && running.size() > 0) { for (Job r : running) { System.out.println(r.getJobName()); } } System.out.println("Ready jobs"); ArrayList<Job> ready = jc.getReadyJobs(); if (ready != null && ready.size() > 0) { for (Job r : ready) { System.out.println(r.getJobName()); } } System.out.println("Waiting jobs"); ArrayList<Job> waiting = jc.getWaitingJobs(); if (waiting != null && waiting.size() > 0) { for (Job r : ready) { System.out.println(r.getJobName()); } } System.out.println("Successful jobs"); ArrayList<Job> success = jc.getSuccessfulJobs(); if (success != null && success.size() > 0) { for (Job r : ready) { System.out.println(r.getJobName()); } } } i++; } ArrayList<Job> failures = jc.getFailedJobs(); if (failures != null && failures.size() > 0) { for (Job failure : failures) { System.err.println(failure.getMessage()); } } jc.stop(); }
@Test public void testReducerNumEstimationForOrderBy() throws Exception { // Skip the test for Tez. Tez use a different mechanism. // Equivalent test is in TestTezAutoParallelism Assume.assumeTrue("Skip this test for TEZ", Util.isMapredExecType(cluster.getExecType())); // use the estimation pc.getProperties().setProperty("pig.exec.reducers.bytes.per.reducer", "100"); pc.getProperties().setProperty("pig.exec.reducers.max", "10"); String query = "a = load '/passwd';" + "b = order a by $0;" + "store b into 'output';"; PigServer ps = new PigServer(cluster.getExecType(), cluster.getProperties()); PhysicalPlan pp = Util.buildPp(ps, query); MROperPlan mrPlan = Util.buildMRPlanWithOptimizer(pp, pc); Configuration conf = ConfigurationUtil.toConfiguration(pc.getProperties()); JobControlCompiler jcc = new JobControlCompiler(pc, conf); JobControl jobControl = jcc.compile(mrPlan, query); assertEquals(2, mrPlan.size()); // first job uses a single reducer for the sampling Util.assertParallelValues(-1, 1, -1, 1, jobControl.getWaitingJobs().get(0).getJobConf()); // Simulate the first job having run so estimation kicks in. MapReduceOper sort = mrPlan.getLeaves().get(0); jcc.updateMROpPlan(jobControl.getReadyJobs()); FileLocalizer.create(sort.getQuantFile(), pc); jobControl = jcc.compile(mrPlan, query); sort = mrPlan.getLeaves().get(0); long reducer = Math.min( (long) Math.ceil(new File("test/org/apache/pig/test/data/passwd").length() / 100.0), 10); assertEquals(reducer, sort.getRequestedParallelism()); // the second job estimates reducers Util.assertParallelValues( -1, -1, reducer, reducer, jobControl.getWaitingJobs().get(0).getJobConf()); // use the PARALLEL key word, it will override the estimated reducer number query = "a = load '/passwd';" + "b = order a by $0 PARALLEL 2;" + "store b into 'output';"; pp = Util.buildPp(ps, query); mrPlan = Util.buildMRPlanWithOptimizer(pp, pc); assertEquals(2, mrPlan.size()); sort = mrPlan.getLeaves().get(0); assertEquals(2, sort.getRequestedParallelism()); // the estimation won't take effect when it apply to non-dfs or the files doesn't exist, such as // hbase query = "a = load 'hbase://passwd' using org.apache.pig.backend.hadoop.hbase.HBaseStorage('c:f1 c:f2');" + "b = order a by $0 ;" + "store b into 'output';"; pp = Util.buildPp(ps, query); mrPlan = Util.buildMRPlanWithOptimizer(pp, pc); assertEquals(2, mrPlan.size()); sort = mrPlan.getLeaves().get(0); // the requested parallel will be -1 if users don't set any of default_parallel, paralllel // and the estimation doesn't take effect. MR framework will finally set it to 1. assertEquals(-1, sort.getRequestedParallelism()); // test order by with three jobs (after optimization) query = "a = load '/passwd';" + "b = foreach a generate $0, $1, $2;" + "c = order b by $0;" + "store c into 'output';"; pp = Util.buildPp(ps, query); mrPlan = Util.buildMRPlanWithOptimizer(pp, pc); assertEquals(3, mrPlan.size()); // Simulate the first 2 jobs having run so estimation kicks in. sort = mrPlan.getLeaves().get(0); FileLocalizer.create(sort.getQuantFile(), pc); jobControl = jcc.compile(mrPlan, query); Util.copyFromLocalToCluster( cluster, "test/org/apache/pig/test/data/passwd", ((POLoad) sort.mapPlan.getRoots().get(0)).getLFile().getFileName()); // First job is just foreach with projection, mapper-only job, so estimate gets ignored Util.assertParallelValues(-1, -1, -1, 0, jobControl.getWaitingJobs().get(0).getJobConf()); jcc.updateMROpPlan(jobControl.getReadyJobs()); jobControl = jcc.compile(mrPlan, query); jcc.updateMROpPlan(jobControl.getReadyJobs()); // Second job is a sampler, which requests and gets 1 reducer Util.assertParallelValues(-1, 1, -1, 1, jobControl.getWaitingJobs().get(0).getJobConf()); jobControl = jcc.compile(mrPlan, query); sort = mrPlan.getLeaves().get(0); assertEquals(reducer, sort.getRequestedParallelism()); // Third job is the order, which uses the estimated number of reducers Util.assertParallelValues( -1, -1, reducer, reducer, jobControl.getWaitingJobs().get(0).getJobConf()); }
@Test public void testReducerNumEstimation() throws Exception { // Skip the test for Tez. Tez use a different mechanism. // Equivalent test is in TestTezAutoParallelism Assume.assumeTrue("Skip this test for TEZ", Util.isMapredExecType(cluster.getExecType())); // use the estimation Configuration conf = HBaseConfiguration.create(new Configuration()); HBaseTestingUtility util = new HBaseTestingUtility(conf); int clientPort = util.startMiniZKCluster().getClientPort(); util.startMiniHBaseCluster(1, 1); String query = "a = load '/passwd';" + "b = group a by $0;" + "store b into 'output';"; PigServer ps = new PigServer(cluster.getExecType(), cluster.getProperties()); PhysicalPlan pp = Util.buildPp(ps, query); MROperPlan mrPlan = Util.buildMRPlan(pp, pc); pc.getConf().setProperty("pig.exec.reducers.bytes.per.reducer", "100"); pc.getConf().setProperty("pig.exec.reducers.max", "10"); pc.getConf().setProperty(HConstants.ZOOKEEPER_CLIENT_PORT, Integer.toString(clientPort)); ConfigurationValidator.validatePigProperties(pc.getProperties()); conf = ConfigurationUtil.toConfiguration(pc.getProperties()); JobControlCompiler jcc = new JobControlCompiler(pc, conf); JobControl jc = jcc.compile(mrPlan, "Test"); Job job = jc.getWaitingJobs().get(0); long reducer = Math.min( (long) Math.ceil(new File("test/org/apache/pig/test/data/passwd").length() / 100.0), 10); Util.assertParallelValues(-1, -1, reducer, reducer, job.getJobConf()); // use the PARALLEL key word, it will override the estimated reducer number query = "a = load '/passwd';" + "b = group a by $0 PARALLEL 2;" + "store b into 'output';"; pp = Util.buildPp(ps, query); mrPlan = Util.buildMRPlan(pp, pc); pc.getConf().setProperty("pig.exec.reducers.bytes.per.reducer", "100"); pc.getConf().setProperty("pig.exec.reducers.max", "10"); ConfigurationValidator.validatePigProperties(pc.getProperties()); conf = ConfigurationUtil.toConfiguration(pc.getProperties()); jcc = new JobControlCompiler(pc, conf); jc = jcc.compile(mrPlan, "Test"); job = jc.getWaitingJobs().get(0); Util.assertParallelValues(-1, 2, -1, 2, job.getJobConf()); final byte[] COLUMNFAMILY = Bytes.toBytes("pig"); util.createTable(Bytes.toBytesBinary("test_table"), COLUMNFAMILY); // the estimation won't take effect when it apply to non-dfs or the files doesn't exist, such as // hbase query = "a = load 'hbase://test_table' using org.apache.pig.backend.hadoop.hbase.HBaseStorage('c:f1 c:f2');" + "b = group a by $0 ;" + "store b into 'output';"; pp = Util.buildPp(ps, query); mrPlan = Util.buildMRPlan(pp, pc); pc.getConf().setProperty("pig.exec.reducers.bytes.per.reducer", "100"); pc.getConf().setProperty("pig.exec.reducers.max", "10"); ConfigurationValidator.validatePigProperties(pc.getProperties()); conf = ConfigurationUtil.toConfiguration(pc.getProperties()); jcc = new JobControlCompiler(pc, conf); jc = jcc.compile(mrPlan, "Test"); job = jc.getWaitingJobs().get(0); Util.assertParallelValues(-1, -1, 1, 1, job.getJobConf()); util.deleteTable(Bytes.toBytesBinary("test_table")); // In HBase 0.90.1 and above we can use util.shutdownMiniHBaseCluster() // here instead. MiniHBaseCluster hbc = util.getHBaseCluster(); if (hbc != null) { hbc.shutdown(); hbc.join(); } util.shutdownMiniZKCluster(); }
public static void main(String[] args) throws IOException { JobConf lp = new JobConf(L4.class); lp.setJobName("Load Page Views"); lp.setInputFormat(TextInputFormat.class); lp.setOutputKeyClass(Text.class); lp.setOutputValueClass(Text.class); lp.setMapperClass(ReadPageViews.class); lp.setCombinerClass(Combiner.class); lp.setReducerClass(Group.class); Properties props = System.getProperties(); String dataDir = props.getProperty("PIGMIX_DIR", "/user/pig/tests/data/pigmix"); for (Map.Entry<Object, Object> entry : props.entrySet()) { lp.set((String) entry.getKey(), (String) entry.getValue()); } FileInputFormat.addInputPath(lp, new Path(dataDir, "page_views")); FileOutputFormat.setOutputPath( lp, new Path("/user/" + System.getProperty("user.name") + "/L4out")); lp.setNumReduceTasks(40); Job group = new Job(lp); JobControl jc = new JobControl("L4 join"); jc.addJob(group); new Thread(jc).start(); int i = 0; while (!jc.allFinished()) { ArrayList<Job> failures = jc.getFailedJobs(); if (failures != null && failures.size() > 0) { for (Job failure : failures) { System.err.println(failure.getMessage()); } break; } try { Thread.sleep(5000); } catch (InterruptedException e) { } if (i % 10000 == 0) { System.out.println("Running jobs"); ArrayList<Job> running = jc.getRunningJobs(); if (running != null && running.size() > 0) { for (Job r : running) { System.out.println(r.getJobName()); } } System.out.println("Ready jobs"); ArrayList<Job> ready = jc.getReadyJobs(); if (ready != null && ready.size() > 0) { for (Job r : ready) { System.out.println(r.getJobName()); } } System.out.println("Waiting jobs"); ArrayList<Job> waiting = jc.getWaitingJobs(); if (waiting != null && waiting.size() > 0) { for (Job r : ready) { System.out.println(r.getJobName()); } } System.out.println("Successful jobs"); ArrayList<Job> success = jc.getSuccessfulJobs(); if (success != null && success.size() > 0) { for (Job r : ready) { System.out.println(r.getJobName()); } } } i++; } ArrayList<Job> failures = jc.getFailedJobs(); if (failures != null && failures.size() > 0) { for (Job failure : failures) { System.err.println(failure.getMessage()); } } jc.stop(); }
/** @param args */ public static void main(String[] args) { File inputFile = new File(args[0]); File frameFile = new File(args[1]); File tempDir = new File(args[2]); String dbPath = args[3]; try { JobControl jobControl = new JobControl("jsonld-entities"); JobConf defaultConf = new JobConf(); // Map the triples into JSON-LD fragments JobConf initialLoadConf = new JobConf(defaultConf); initialLoadConf.setInt("rank", 0); initialLoadConf.setStrings("frame-file", frameFile.toString()); initialLoadConf.setMapperClass(TripleMapper.class); initialLoadConf.setReducerClass(EntityReducer.class); initialLoadConf.setInputFormat(TextInputFormat.class); initialLoadConf.setOutputFormat(TextOutputFormat.class); initialLoadConf.setMapOutputKeyClass(Text.class); initialLoadConf.setMapOutputValueClass(Text.class); initialLoadConf.setOutputKeyClass(Text.class); initialLoadConf.setOutputValueClass(Text.class); FileInputFormat.setInputPaths(initialLoadConf, new Path(inputFile.toString())); Path outputPath = new Path(tempDir.toString() + "/stage0"); FileOutputFormat.setOutputPath(initialLoadConf, outputPath); Path prevOutput = outputPath; Job initialLoad = new Job(initialLoadConf); jobControl.addJob(initialLoad); // Aggregate JSON-LD fragments into nested structure EntityFrame entityFrame = new EntityFrame(); entityFrame.parse(frameFile); Job prevJob = initialLoad; for (int rank = 1; rank <= entityFrame.getMaxRank(); rank++) { JobConf conf = new JobConf(defaultConf); conf.setInt("rank", rank); conf.setStrings("frame-file", frameFile.toString()); conf.setMapperClass(IdentityMapper.class); conf.setReducerClass(EntityReducer.class); conf.setInputFormat(KeyValueTextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); conf.setMapOutputKeyClass(Text.class); conf.setMapOutputValueClass(Text.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(Text.class); FileInputFormat.setInputPaths(conf, prevOutput); outputPath = new Path(tempDir.toString() + "/stage" + rank); FileOutputFormat.setOutputPath(conf, outputPath); prevOutput = outputPath; Job buildEntityJob = new Job(conf); jobControl.addJob(buildEntityJob); buildEntityJob.addDependingJob(prevJob); prevJob = buildEntityJob; } // Frame nested data JobConf frameConf = new JobConf(defaultConf); frameConf.setStrings("frame-file", frameFile.toString()); frameConf.setMapperClass(IdentityMapper.class); frameConf.setReducerClass(EntityFrameReducer.class); frameConf.setInputFormat(KeyValueTextInputFormat.class); frameConf.setOutputFormat(MongoOutputFormat.class); frameConf.set("mongo.output.uri", dbPath); frameConf.set( "stream.io.identifier.resolver.class", "com.mongodb.hadoop.mapred.MongoOutputFormat"); frameConf.setMapOutputKeyClass(Text.class); frameConf.setMapOutputValueClass(Text.class); frameConf.setOutputKeyClass(NullWritable.class); frameConf.setOutputValueClass(MongoUpdateWritable.class); FileInputFormat.setInputPaths(frameConf, prevOutput); Job frameEntitiesJob = new Job(frameConf); jobControl.addJob(frameEntitiesJob); frameEntitiesJob.addDependingJob(prevJob); FileSystem fs = FileSystem.get(defaultConf); fs.delete(new Path(tempDir.toString()), true); // Run pipeline jobControl.run(); } catch (IOException e) { // TODO(simister): Auto-generated catch block e.printStackTrace(); } }