public double valueAt(double[] param) { double[] sdInv = new double[nVariables]; for (int i = 0; i < nVariables; i++) { R.setEntry(i, i, 1.0 - param[i]); sdInv[i] = 1.0 / Sinv.getEntry(i, i); } DiagonalMatrix diagSdInv = new DiagonalMatrix(sdInv); EigenDecomposition eigen = new EigenDecomposition(R); RealMatrix eigenVectors = eigen.getV().getSubMatrix(0, nVariables - 1, 0, nFactors - 1); double[] ev = new double[nFactors]; for (int i = 0; i < nFactors; i++) { ev[i] = Math.sqrt(eigen.getRealEigenvalue(i)); } DiagonalMatrix evMatrix = new DiagonalMatrix( ev); // USE Apache version of Diagonal matrix when upgrade to version 3.2 RealMatrix LAMBDA = eigenVectors.multiply(evMatrix); RealMatrix SIGMA = (LAMBDA.multiply(LAMBDA.transpose())); double value = 0.0; RealMatrix DIF = R.subtract(SIGMA); for (int i = 0; i < DIF.getRowDimension(); i++) { for (int j = 0; j < DIF.getColumnDimension(); j++) { value = DIF.getEntry(i, j); DIF.setEntry(i, j, Math.pow(value, 2)); } } RealMatrix RESID = diagSdInv.multiply(DIF).multiply(diagSdInv); double sum = 0.0; for (int i = 0; i < RESID.getRowDimension(); i++) { for (int j = 0; j < RESID.getColumnDimension(); j++) { sum += RESID.getEntry(i, j); } } return sum; }
private void computeFactorLoadings(double[] x) { uniqueness = x; communality = new double[nVariables]; for (int i = 0; i < nVariables; i++) { R.setEntry(i, i, 1.0 - x[i]); } EigenDecomposition E = new EigenDecomposition(R); RealMatrix L = E.getV().getSubMatrix(0, nVariables - 1, 0, nFactors - 1); double[] ev = new double[nFactors]; for (int i = 0; i < nFactors; i++) { ev[i] = Math.sqrt(E.getRealEigenvalue(i)); } DiagonalMatrix M = new DiagonalMatrix(ev); RealMatrix LOAD = L.multiply(M); // rotate factor loadings if (rotationMethod != RotationMethod.NONE) { GPArotation gpa = new GPArotation(); RotationResults results = gpa.rotate(LOAD, rotationMethod); LOAD = results.getFactorLoadings(); } Sum[] colSums = new Sum[nFactors]; Sum[] colSumsSquares = new Sum[nFactors]; for (int j = 0; j < nFactors; j++) { colSums[j] = new Sum(); colSumsSquares[j] = new Sum(); } factorLoading = new double[nVariables][nFactors]; for (int i = 0; i < nVariables; i++) { for (int j = 0; j < nFactors; j++) { factorLoading[i][j] = LOAD.getEntry(i, j); colSums[j].increment(factorLoading[i][j]); colSumsSquares[j].increment(Math.pow(factorLoading[i][j], 2)); communality[i] += Math.pow(factorLoading[i][j], 2); } } // check sign of factor double sign = 1.0; for (int i = 0; i < nVariables; i++) { for (int j = 0; j < nFactors; j++) { if (colSums[j].getResult() < 0) { sign = -1.0; } else { sign = 1.0; } factorLoading[i][j] = factorLoading[i][j] * sign; } } double totSumOfSquares = 0.0; sumsOfSquares = new double[nFactors]; proportionOfExplainedVariance = new double[nFactors]; proportionOfVariance = new double[nFactors]; for (int j = 0; j < nFactors; j++) { sumsOfSquares[j] = colSumsSquares[j].getResult(); totSumOfSquares += sumsOfSquares[j]; } for (int j = 0; j < nFactors; j++) { proportionOfExplainedVariance[j] = sumsOfSquares[j] / totSumOfSquares; proportionOfVariance[j] = sumsOfSquares[j] / nVariables; } }