@Override public Double set(int index, Double element) { if (index < n) stateIn.setEntry(index, element); else if (index < n + h) stateHidden.setEntry(index - n, element); else stateOut.setEntry(index - n - h, element); return element; }
@Override public void step() { stateHidden.setSubVector(0, weights0.operate(stateIn)); for (int i : series(h)) stateHidden.setEntry(i, activation.function(stateHidden.getEntry(i))); stateOut.setSubVector(0, weights1.operate(stateHidden)); }
public static RealVector randVector(int dim) { Random r = new Random(); r.setSeed(System.currentTimeMillis()); RealVector res = MathFactory.createRealVector(dim); for (int i = 0; i < dim; i++) { res.setEntry(i, r.nextDouble()); } return res; }
public RepeatingLSH(List<LSH> lshList) throws MathException { super(lshList.get(0).getDim(), lshList.get(0).getRandomGenerator()); this.lshList = lshList; RandomGenerator rg = lshList.get(0).getRandomGenerator(); RandomData rd = new RandomDataImpl(rg); /* * Compute a random vector of lshList.size() with each component taken from U(0,10) */ randomVec = new ArrayRealVector(lshList.size()); for (int i = 0; i < randomVec.getDimension(); ++i) { randomVec.setEntry(i, rd.nextUniform(0, 10.0)); } }
public static void main(String[] args) { RealMatrix coefficients2 = new Array2DRowRealMatrix( new double[][] { {0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D}, {0.0D, 0.0D, 0.857D, 0.0D, 0.054D, 0.018D, 0.0D, 0.071D, 0.0D, 0.0D, 0.0D}, {0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D}, {0.0D, 0.0D, 0.857D, 0.0D, 0.054D, 0.018D, 0.0D, 0.071D, 0.0D, 0.0D, 0.0D}, {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D}, {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 0.0D, 0.0D}, {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D}, {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.6D, 0.4D}, {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D}, {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 1.0D, 0.0D, 0.0D, 1.0D}, {0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D, 0.0D} }, false); for (int i = 0; i < 11; i++) { coefficients2.setEntry(i, i, -1d); } coefficients2 = coefficients2.transpose(); DecompositionSolver solver = new LUDecompositionImpl(coefficients2).getSolver(); System.out.println("1 method my Value :"); RealVector constants = new ArrayRealVector(new double[] {-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, false); RealVector solution = solver.solve(constants); double[] data = solution.getData(); DecimalFormat df = new DecimalFormat(); df.setRoundingMode(RoundingMode.DOWN); System.out.println("Корни уравнения:"); for (double dd : data) { System.out.print(df.format(dd) + " "); } System.out.println(); System.out.println( "Среднее число процессорных операций, выполняемых при одном прогоне алгоритма: " + operationsByProcess(data, arr)); System.out.println("Среднее число обращений к файлам:"); for (int i = 1; i < 4; i++) { System.out.println(" Файл " + i + " : " + fileMiddleRequest(data, arr, i)); } System.out.println("Среднее количество информации передаваемой при одном обращении к файлам:"); for (int i = 1; i < 4; i++) { System.out.println(" Файл " + i + " : " + bitsPerFileTransfer(data, arr, i)); } System.out.println( "Сумма среднего числа обращений к основным операторам: " + operatorExecute(data, arr)); System.out.println("Средняя трудоемкость этапа: " + middleWork(data, arr)); }
/** * Compute the aggregated hash of a vector. This is done by taking the output of the k hashes as a * vector and computing the dot product with a vector of uniformly distributed components between * 0 and 10. * * <p>So, consider a_{0,k} such that a_i ~ U(0,10) and hash functions h_{0,k} treated as 2 * k-dimensional vectors, we return the dot product of h(v) and a. */ public long apply(RealVector vector) { long res = 0; for (int i = 0; i < lshList.size(); ++i) { res += randomVec.getEntry(i) * lshList.get(i).apply(vector); } return res; }
/** * Build a constraint involving two linear equations. * * <p>A linear constraint with two linear equation has one of the forms: * * <ul> * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> = * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub> * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> <= * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub> * <li>l<sub>1</sub>x<sub>1</sub> + ... l<sub>n</sub>x<sub>n</sub> + l<sub>cst</sub> >= * r<sub>1</sub>x<sub>1</sub> + ... r<sub>n</sub>x<sub>n</sub> + r<sub>cst</sub> * </ul> * * @param lhsCoefficients The coefficients of the linear expression on the left hand side of the * constraint * @param lhsConstant The constant term of the linear expression on the left hand side of the * constraint * @param relationship The type of (in)equality used in the constraint * @param rhsCoefficients The coefficients of the linear expression on the right hand side of the * constraint * @param rhsConstant The constant term of the linear expression on the right hand side of the * constraint */ public LinearConstraint( final RealVector lhsCoefficients, final double lhsConstant, final Relationship relationship, final RealVector rhsCoefficients, final double rhsConstant) { this.coefficients = lhsCoefficients.subtract(rhsCoefficients); this.relationship = relationship; this.value = rhsConstant - lhsConstant; }
/** {@inheritDoc} */ @Override public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof LinearConstraint) { LinearConstraint rhs = (LinearConstraint) other; return (relationship == rhs.relationship) && (value == rhs.value) && coefficients.equals(rhs.coefficients); } return false; }
/** * Calculates the variance on the y by GLS. * * <pre> * Var(y)=Tr(u' Omega^-1 u)/(n-k) * </pre> * * @return The Y variance */ @Override protected double calculateYVariance() { RealVector residuals = calculateResiduals(); double t = residuals.dotProduct(getOmegaInverse().operate(residuals)); return t / (X.getRowDimension() - X.getColumnDimension()); }
public void test4() throws Throwable { java.lang.Double var0 = new java.lang.Double((-1.0d)); double[] var1 = new double[] {var0}; org.apache.commons.math.linear.OpenMapRealVector var2 = new org.apache.commons.math.linear.OpenMapRealVector(var1); int var3 = var2.getDimension(); java.lang.Double var4 = new java.lang.Double((-1.0d)); java.lang.Double var5 = new java.lang.Double(0.0d); java.lang.Double var6 = new java.lang.Double((-1.0d)); double[] var7 = new double[] {var4, var5, var6}; org.apache.commons.math.linear.ArrayRealVector var8 = new org.apache.commons.math.linear.ArrayRealVector(var7); java.lang.Double var9 = new java.lang.Double((-1.0d)); java.lang.Double var10 = new java.lang.Double(0.0d); java.lang.Double var11 = new java.lang.Double((-1.0d)); double[] var12 = new double[] {var9, var10, var11}; org.apache.commons.math.linear.ArrayRealVector var13 = new org.apache.commons.math.linear.ArrayRealVector(var12); org.apache.commons.math.linear.RealVector var14 = var8.ebeDivide((org.apache.commons.math.linear.RealVector) var13); java.lang.Double var15 = new java.lang.Double((-1.0d)); java.lang.Double var16 = new java.lang.Double(10.0d); java.lang.Double var17 = new java.lang.Double(100.0d); int var18 = org.apache.commons.math.util.MathUtils.compareTo( (double) var15, (double) var16, (double) var17); org.apache.commons.math.linear.RealVector var19 = var13.mapPowToSelf((double) var17); org.apache.commons.math.linear.ArrayRealVector var20 = new org.apache.commons.math.linear.ArrayRealVector(var3, var17); java.lang.Double var21 = new java.lang.Double((-1.0d)); double[] var22 = new double[] {var21}; org.apache.commons.math.linear.OpenMapRealVector var23 = new org.apache.commons.math.linear.OpenMapRealVector(var22); java.lang.Double var24 = new java.lang.Double((-1.0d)); double[] var25 = new double[] {var24}; org.apache.commons.math.linear.OpenMapRealVector var26 = new org.apache.commons.math.linear.OpenMapRealVector(var25); org.apache.commons.math.linear.OpenMapRealVector var27 = var23.add(var26); org.apache.commons.math.linear.OpenMapRealVector var28 = new org.apache.commons.math.linear.OpenMapRealVector(var27); java.lang.Double var29 = new java.lang.Double((-1.0d)); java.lang.Double var30 = new java.lang.Double(0.0d); java.lang.Double var31 = new java.lang.Double((-1.0d)); double[] var32 = new double[] {var29, var30, var31}; org.apache.commons.math.linear.ArrayRealVector var33 = new org.apache.commons.math.linear.ArrayRealVector(var32); java.lang.Double var34 = new java.lang.Double((-1.0d)); java.lang.Double var35 = new java.lang.Double(0.0d); java.lang.Double var36 = new java.lang.Double((-1.0d)); double[] var37 = new double[] {var34, var35, var36}; org.apache.commons.math.linear.ArrayRealVector var38 = new org.apache.commons.math.linear.ArrayRealVector(var37); org.apache.commons.math.linear.RealVector var39 = var33.ebeDivide((org.apache.commons.math.linear.RealVector) var38); java.lang.Double var40 = new java.lang.Double(0.0d); java.lang.Double var41 = new java.lang.Double((-1.0d)); java.lang.Double var42 = new java.lang.Double((-1.0d)); int var43 = org.apache.commons.math.util.MathUtils.compareTo( (double) var40, (double) var41, (double) var42); org.apache.commons.math.linear.RealVector var44 = var33.mapDivide((double) var41); org.apache.commons.math.linear.RealVector var45 = var28.mapSubtractToSelf((double) var41); org.apache.commons.math.linear.RealVector var46 = var20.projection(var45); // Checks the contract: equals-hashcode on var19 and var44 assertTrue( "Contract failed: equals-hashcode on var19 and var44", var19.equals(var44) ? var19.hashCode() == var44.hashCode() : true); // Checks the contract: equals-hashcode on var44 and var19 assertTrue( "Contract failed: equals-hashcode on var44 and var19", var44.equals(var19) ? var44.hashCode() == var19.hashCode() : true); }
public void test11() throws Throwable { java.lang.Double var0 = new java.lang.Double((-1.0d)); java.lang.Double var1 = new java.lang.Double(0.0d); java.lang.Double var2 = new java.lang.Double((-1.0d)); double[] var3 = new double[] {var0, var1, var2}; org.apache.commons.math.linear.ArrayRealVector var4 = new org.apache.commons.math.linear.ArrayRealVector(var3); java.lang.Double var5 = new java.lang.Double((-1.0d)); java.lang.Double var6 = new java.lang.Double(0.0d); java.lang.Double var7 = new java.lang.Double((-1.0d)); double[] var8 = new double[] {var5, var6, var7}; org.apache.commons.math.linear.ArrayRealVector var9 = new org.apache.commons.math.linear.ArrayRealVector(var8); org.apache.commons.math.linear.RealVector var10 = var4.ebeDivide((org.apache.commons.math.linear.RealVector) var9); java.lang.Double var11 = new java.lang.Double((-1.0d)); java.lang.Double var12 = new java.lang.Double(10.0d); java.lang.Double var13 = new java.lang.Double(100.0d); int var14 = org.apache.commons.math.util.MathUtils.compareTo( (double) var11, (double) var12, (double) var13); org.apache.commons.math.linear.RealVector var15 = var9.mapPowToSelf((double) var13); java.lang.Double[] var16 = new java.lang.Double[] {var13}; org.apache.commons.math.linear.ArrayRealVector var17 = new org.apache.commons.math.linear.ArrayRealVector(var16); org.apache.commons.math.linear.RealVector var18 = var17.mapCbrtToSelf(); org.apache.commons.math.linear.RealVector var19 = var17.mapFloorToSelf(); org.apache.commons.math.linear.RealVector var20 = var17.mapCosh(); org.apache.commons.math.linear.RealVector var21 = var17.mapAcos(); java.lang.Double var22 = new java.lang.Double((-1.0d)); double[] var23 = new double[] {var22}; org.apache.commons.math.linear.OpenMapRealVector var24 = new org.apache.commons.math.linear.OpenMapRealVector(var23); java.lang.Double var25 = new java.lang.Double((-1.0d)); double[] var26 = new double[] {var25}; org.apache.commons.math.linear.OpenMapRealVector var27 = new org.apache.commons.math.linear.OpenMapRealVector(var26); org.apache.commons.math.linear.OpenMapRealVector var28 = var24.add(var27); org.apache.commons.math.linear.OpenMapRealVector var29 = new org.apache.commons.math.linear.OpenMapRealVector(var28); java.lang.Double var30 = new java.lang.Double((-1.0d)); java.lang.Double var31 = new java.lang.Double(0.0d); java.lang.Double var32 = new java.lang.Double((-1.0d)); double[] var33 = new double[] {var30, var31, var32}; org.apache.commons.math.linear.ArrayRealVector var34 = new org.apache.commons.math.linear.ArrayRealVector(var33); java.lang.Double var35 = new java.lang.Double((-1.0d)); java.lang.Double var36 = new java.lang.Double(0.0d); java.lang.Double var37 = new java.lang.Double((-1.0d)); double[] var38 = new double[] {var35, var36, var37}; org.apache.commons.math.linear.ArrayRealVector var39 = new org.apache.commons.math.linear.ArrayRealVector(var38); org.apache.commons.math.linear.RealVector var40 = var34.ebeDivide((org.apache.commons.math.linear.RealVector) var39); java.lang.Double var41 = new java.lang.Double(0.0d); java.lang.Double var42 = new java.lang.Double((-1.0d)); java.lang.Double var43 = new java.lang.Double((-1.0d)); int var44 = org.apache.commons.math.util.MathUtils.compareTo( (double) var41, (double) var42, (double) var43); org.apache.commons.math.linear.RealVector var45 = var34.mapDivide((double) var42); org.apache.commons.math.linear.RealVector var46 = var29.mapSubtractToSelf((double) var42); boolean var47 = var17.equals((java.lang.Object) var42); // Checks the contract: equals-hashcode on var15 and var45 assertTrue( "Contract failed: equals-hashcode on var15 and var45", var15.equals(var45) ? var15.hashCode() == var45.hashCode() : true); // Checks the contract: equals-hashcode on var45 and var15 assertTrue( "Contract failed: equals-hashcode on var45 and var15", var45.equals(var15) ? var45.hashCode() == var15.hashCode() : true); }
/** * Returns the sum of squared residuals. * * @return residual sum of squares * @since 2.2 */ public double calculateResidualSumOfSquares() { final RealVector residuals = calculateResiduals(); return residuals.dotProduct(residuals); }
public void test13() throws Throwable { java.lang.Double var0 = new java.lang.Double((-1.0d)); double[] var1 = new double[] {var0}; org.apache.commons.math.linear.OpenMapRealVector var2 = new org.apache.commons.math.linear.OpenMapRealVector(var1); java.lang.Double var3 = new java.lang.Double((-1.0d)); double[] var4 = new double[] {var3}; org.apache.commons.math.linear.OpenMapRealVector var5 = new org.apache.commons.math.linear.OpenMapRealVector(var4); org.apache.commons.math.linear.OpenMapRealVector var6 = var2.add(var5); org.apache.commons.math.linear.OpenMapRealVector var7 = new org.apache.commons.math.linear.OpenMapRealVector(var6); java.lang.Double var8 = new java.lang.Double((-1.0d)); java.lang.Double var9 = new java.lang.Double(0.0d); java.lang.Double var10 = new java.lang.Double((-1.0d)); double[] var11 = new double[] {var8, var9, var10}; org.apache.commons.math.linear.ArrayRealVector var12 = new org.apache.commons.math.linear.ArrayRealVector(var11); java.lang.Double var13 = new java.lang.Double((-1.0d)); java.lang.Double var14 = new java.lang.Double(0.0d); java.lang.Double var15 = new java.lang.Double((-1.0d)); double[] var16 = new double[] {var13, var14, var15}; org.apache.commons.math.linear.ArrayRealVector var17 = new org.apache.commons.math.linear.ArrayRealVector(var16); org.apache.commons.math.linear.RealVector var18 = var12.ebeDivide((org.apache.commons.math.linear.RealVector) var17); java.lang.Double var19 = new java.lang.Double(0.0d); java.lang.Double var20 = new java.lang.Double((-1.0d)); java.lang.Double var21 = new java.lang.Double((-1.0d)); int var22 = org.apache.commons.math.util.MathUtils.compareTo( (double) var19, (double) var20, (double) var21); org.apache.commons.math.linear.RealVector var23 = var12.mapDivide((double) var20); org.apache.commons.math.linear.RealVector var24 = var7.mapSubtractToSelf((double) var20); double var25 = var7.getSparcity(); java.lang.Double var26 = new java.lang.Double((-1.0d)); double[] var27 = new double[] {var26}; org.apache.commons.math.linear.OpenMapRealVector var28 = new org.apache.commons.math.linear.OpenMapRealVector(var27); int var29 = var28.getDimension(); java.lang.Double var30 = new java.lang.Double((-1.0d)); java.lang.Double var31 = new java.lang.Double(0.0d); java.lang.Double var32 = new java.lang.Double((-1.0d)); double[] var33 = new double[] {var30, var31, var32}; org.apache.commons.math.linear.ArrayRealVector var34 = new org.apache.commons.math.linear.ArrayRealVector(var33); java.lang.Double var35 = new java.lang.Double((-1.0d)); java.lang.Double var36 = new java.lang.Double(0.0d); java.lang.Double var37 = new java.lang.Double((-1.0d)); double[] var38 = new double[] {var35, var36, var37}; org.apache.commons.math.linear.ArrayRealVector var39 = new org.apache.commons.math.linear.ArrayRealVector(var38); org.apache.commons.math.linear.RealVector var40 = var34.ebeDivide((org.apache.commons.math.linear.RealVector) var39); java.lang.Double var41 = new java.lang.Double((-1.0d)); java.lang.Double var42 = new java.lang.Double(10.0d); java.lang.Double var43 = new java.lang.Double(100.0d); int var44 = org.apache.commons.math.util.MathUtils.compareTo( (double) var41, (double) var42, (double) var43); org.apache.commons.math.linear.RealVector var45 = var39.mapPowToSelf((double) var43); org.apache.commons.math.linear.ArrayRealVector var46 = new org.apache.commons.math.linear.ArrayRealVector(var29, var43); java.lang.Double var47 = new java.lang.Double((-1.0d)); java.lang.Double var48 = new java.lang.Double(10.0d); java.lang.Double var49 = new java.lang.Double(1.0d); java.lang.Double var50 = new java.lang.Double(1.0d); boolean var51 = org.apache.commons.math.util.MathUtils.equals((double) var49, (double) var50); int var52 = org.apache.commons.math.util.MathUtils.compareTo( (double) var47, (double) var48, (double) var49); java.lang.Double var53 = new java.lang.Double((-1.0d)); java.lang.Double var54 = new java.lang.Double(0.0d); java.lang.Double var55 = new java.lang.Double((-1.0d)); double[] var56 = new double[] {var53, var54, var55}; org.apache.commons.math.linear.ArrayRealVector var57 = new org.apache.commons.math.linear.ArrayRealVector(var56); java.lang.Double var58 = new java.lang.Double((-1.0d)); java.lang.Double var59 = new java.lang.Double(0.0d); java.lang.Double var60 = new java.lang.Double((-1.0d)); double[] var61 = new double[] {var58, var59, var60}; org.apache.commons.math.linear.ArrayRealVector var62 = new org.apache.commons.math.linear.ArrayRealVector(var61); org.apache.commons.math.linear.RealVector var63 = var57.ebeDivide((org.apache.commons.math.linear.RealVector) var62); org.apache.commons.math.linear.RealVector var64 = var57.mapLog10ToSelf(); java.lang.Double var65 = new java.lang.Double(1.0d); org.apache.commons.math.linear.RealVector var66 = var57.mapMultiplyToSelf((double) var65); double var67 = org.apache.commons.math.util.MathUtils.indicator((double) var65); java.lang.Double var68 = new java.lang.Double((-1.0d)); java.lang.Double var69 = new java.lang.Double(10.0d); java.lang.Double var70 = new java.lang.Double(100.0d); int var71 = org.apache.commons.math.util.MathUtils.compareTo( (double) var68, (double) var69, (double) var70); double var72 = org.apache.commons.math.util.MathUtils.normalizeAngle((double) var65, (double) var69); java.lang.Integer var73 = new java.lang.Integer(10); java.lang.Integer var74 = new java.lang.Integer(10); double var75 = org.apache.commons.math.util.MathUtils.binomialCoefficientLog((int) var73, (int) var74); java.lang.Integer var76 = new java.lang.Integer(0); java.lang.Long var77 = new java.lang.Long(100L); int var78 = org.apache.commons.math.util.MathUtils.pow((int) var76, (long) var77); double var79 = org.apache.commons.math.util.MathUtils.binomialCoefficientLog((int) var74, (int) var76); boolean var80 = org.apache.commons.math.util.MathUtils.equalsIncludingNaN( (double) var49, (double) var69, (int) var76); org.apache.commons.math.linear.RealVector var81 = var46.mapMultiplyToSelf((double) var49); org.apache.commons.math.linear.RealVector var82 = var7.mapPow((double) var49); // Checks the contract: equals-hashcode on var23 and var45 assertTrue( "Contract failed: equals-hashcode on var23 and var45", var23.equals(var45) ? var23.hashCode() == var45.hashCode() : true); // Checks the contract: equals-hashcode on var45 and var23 assertTrue( "Contract failed: equals-hashcode on var45 and var23", var45.equals(var23) ? var45.hashCode() == var23.hashCode() : true); }
public static String realVecToString(RealVector r) { String res = "RealVector(" + r.getDimension() + ") of type '" + r.getClass().getName() + "'\n"; return res += Arrays.toString(r.getData()) + "\n"; }
@Override public Double get(int index) { if (index < n) return stateIn.getEntry(index); if (index < n + h) return stateHidden.getEntry(index - n); return stateOut.getEntry(index - n - h); }
/** {@inheritDoc} */ @Override public int hashCode() { return relationship.hashCode() ^ Double.valueOf(value).hashCode() ^ coefficients.hashCode(); }
/** * Solve an estimation problem using a least squares criterion. * * <p>This method set the unbound parameters of the given problem starting from their current * values through several iterations. At each step, the unbound parameters are changed in order to * minimize a weighted least square criterion based on the measurements of the problem. * * <p>The iterations are stopped either when the criterion goes below a physical threshold under * which improvement are considered useless or when the algorithm is unable to improve it (even if * it is still high). The first condition that is met stops the iterations. If the convergence it * not reached before the maximum number of iterations, an {@link EstimationException} is thrown. * * @param problem estimation problem to solve * @exception EstimationException if the problem cannot be solved * @see EstimationProblem */ @Override public void estimate(EstimationProblem problem) throws EstimationException { initializeEstimate(problem); // work matrices double[] grad = new double[parameters.length]; ArrayRealVector bDecrement = new ArrayRealVector(parameters.length); double[] bDecrementData = bDecrement.getDataRef(); RealMatrix wGradGradT = MatrixUtils.createRealMatrix(parameters.length, parameters.length); // iterate until convergence is reached double previous = Double.POSITIVE_INFINITY; do { // build the linear problem incrementJacobianEvaluationsCounter(); RealVector b = new ArrayRealVector(parameters.length); RealMatrix a = MatrixUtils.createRealMatrix(parameters.length, parameters.length); for (int i = 0; i < measurements.length; ++i) { if (!measurements[i].isIgnored()) { double weight = measurements[i].getWeight(); double residual = measurements[i].getResidual(); // compute the normal equation for (int j = 0; j < parameters.length; ++j) { grad[j] = measurements[i].getPartial(parameters[j]); bDecrementData[j] = weight * residual * grad[j]; } // build the contribution matrix for measurement i for (int k = 0; k < parameters.length; ++k) { double gk = grad[k]; for (int l = 0; l < parameters.length; ++l) { wGradGradT.setEntry(k, l, weight * gk * grad[l]); } } // update the matrices a = a.add(wGradGradT); b = b.add(bDecrement); } } try { // solve the linearized least squares problem RealVector dX = new LUDecompositionImpl(a).getSolver().solve(b); // update the estimated parameters for (int i = 0; i < parameters.length; ++i) { parameters[i].setEstimate(parameters[i].getEstimate() + dX.getEntry(i)); } } catch (InvalidMatrixException e) { throw new EstimationException("unable to solve: singular problem"); } previous = cost; updateResidualsAndCost(); } while ((getCostEvaluations() < 2) || (Math.abs(previous - cost) > (cost * steadyStateThreshold) && (Math.abs(cost) > convergence))); }
/** * Modifies this map through a single backpropagation iteration using the given error values on * the output nodes. * * @param error */ public void train(List<Double> error, double learningRate) { RealVector eOut = new ArrayRealVector(error.size()); for (int i : series(error.size())) eOut.setEntry(i, error.get(i)); // * gHidden: delta for the non-bias nodes of the hidden layer gHidden.setSubVector(0, stateHidden.getSubVector(0, n)); // optimize for (int i : Series.series(gHidden.getDimension())) gHidden.setEntry(i, activation.derivative(gHidden.getEntry(i))); eHiddenL = weights1.transpose().operate(eOut); eHidden.setSubVector(0, eHiddenL.getSubVector(0, h)); for (int i : series(h)) eHidden.setEntry(i, eHidden.getEntry(i) * gHidden.getEntry(i)); weights1Delta = MatrixTools.outer(eOut, stateHidden); weights1Delta = weights1Delta.scalarMultiply(-1.0 * learningRate); // optimize weights0Delta = MatrixTools.outer(eHidden, stateIn); weights0Delta = weights0Delta.scalarMultiply(-1.0 * learningRate); weights0 = weights0.add(weights0Delta); weights1 = weights1.add(weights1Delta); }