/**
   * After every {@link #interval} iteration, pick {@link #numberOfSentries a number of} random
   * entities from the given {@link Algorithm algorithm's} topology and compare their previous
   * fitness values with their current fitness values. An environment change is detected when the
   * difference between the previous and current fitness values are >= the specified {@link
   * #epsilon} value.
   *
   * @param algorithm used to get hold of topology of entities and number of iterations
   * @return true if a change has been detected, false otherwise
   */
  @Override
  public <A extends HasTopology & Algorithm & HasNeighbourhood> boolean detect(A algorithm) {
    if ((AbstractAlgorithm.get().getIterations() % interval == 0)
        && (AbstractAlgorithm.get().getIterations() != 0)) {
      List all = Java.List_ArrayList().f(algorithm.getTopology());

      for (int i = 0; i < numberOfSentries.getParameter(); i++) {
        // select random sentry entity
        int random = Rand.nextInt(all.size());
        StandardParticle sentry = (StandardParticle) all.get(random);

        // check for change
        // double previousFitness = sentry.getFitness().getValue();

        boolean detectedChange = false;

        if (sentry.getFitness().getClass().getName().matches("MinimisationFitness")) {
          Fitness previousFitness = sentry.getFitness();
          sentry.calculateFitness();
          Fitness currentFitness = sentry.getFitness();

          if (Math.abs(previousFitness.getValue() - currentFitness.getValue()) >= epsilon) {
            detectedChange = true;
          }
        } else if (sentry.getFitness().getClass().getName().matches("StandardMOFitness")) {
          MOFitness previousFitness = (MOFitness) sentry.getFitness();
          sentry.calculateFitness();
          MOFitness currentFitness = (MOFitness) sentry.getFitness();

          for (int k = 0; k < previousFitness.getDimension(); k++)
            if (Math.abs(
                    previousFitness.getFitness(k).getValue()
                        - currentFitness.getFitness(k).getValue())
                >= epsilon) {
              detectedChange = true;
              break;
            }
        }
        if (detectedChange) {
          System.out.println("Detected a change");
          return true;
        }

        // remove the selected element from the all list preventing it from being selected again
        all.remove(random);
      }
    }
    return false;
  }
Esempio n. 2
0
  /**
   * Calculates the fitness of the given solution by setting the neural network weights to the
   * solution and evaluating the training set in order to calculate the MSE (which is minimized).
   *
   * @param solution the weights representing a solution.
   * @return a new MinimisationFitness wrapping the MSE training error.
   */
  @Override
  protected Fitness calculateFitness(Type solution) {
    if (trainingSet == null) {
      this.initialise();
    }

    int currentIteration = AbstractAlgorithm.get().getIterations();
    if (currentIteration != previousShuffleIteration) {
      try {
        shuffler.operate(trainingSet);
      } catch (CIlibIOException exception) {
        exception.printStackTrace();
      }
    }

    neuralNetwork.getArchitecture().accept(solutionConversionStrategy.interpretSolution(solution));

    double errorTraining = 0.0;
    OutputErrorVisitor visitor = new OutputErrorVisitor();
    Vector error = null;
    for (StandardPattern pattern : trainingSet) {
      Vector output = neuralNetwork.evaluatePattern(pattern);
      visitor.setInput(pattern);
      neuralNetwork.getArchitecture().accept(visitor);
      error = visitor.getOutput();
      for (Numeric real : error) {
        errorTraining += real.doubleValue() * real.doubleValue();
      }
    }
    errorTraining /= trainingSet.getNumRows() * error.size();

    return objective.evaluate(errorTraining);
  }
  /** {@inheritDoc} */
  @Override
  public Vector get(Particle particle) {
    Vector localGuide = (Vector) particle.getLocalGuide();
    Vector globalGuide = (Vector) particle.getGlobalGuide();

    PSO pso = (PSO) AbstractAlgorithm.get();
    List<Entity> positions = getRandomParentEntities(pso.getTopology());

    // select three random individuals, all different and different from particle
    ProbabilityDistributionFuction pdf = new UniformDistribution();

    Vector position1 = (Vector) positions.get(0).getCandidateSolution();
    Vector position2 = (Vector) positions.get(1).getCandidateSolution();
    //        Vector position3 = (Vector) positions.get(2).getContents();

    Vector.Builder builder = Vector.newBuilder();
    for (int i = 0; i < particle.getDimension(); ++i) {
      double r = pdf.getRandomNumber(0, 1);
      double attractor = r * localGuide.doubleValueOf(i) + (1 - r) * globalGuide.doubleValueOf(i);
      double stepSize =
          this.rand3.getRandomNumber(0, 1)
              * (position1.doubleValueOf(i) - position2.doubleValueOf(i));

      if (this.rand2.getRandomNumber(0, 1) > this.crossoverProbability.getParameter()) {
        builder.add(attractor + stepSize);
      } else {
        builder.add(((Vector) particle.getPosition()).doubleValueOf(i)); // position3.getReal(i));
      }
    }
    return builder.build();
  }
 /** {@inheritDoc} */
 public void performReaction(PopulationBasedAlgorithm algorithm) {
   // select new competitors and re-evaluate PBest vector of Particle
   PopulationBasedAlgorithm currentAlgorithm =
       (PopulationBasedAlgorithm) AbstractAlgorithm.get(); // the current sub population algorithm
   int populationID = -1;
   for (Entity e : currentAlgorithm.getTopology()) {
     if (!(e instanceof AbstractParticle))
       throw new RuntimeException(
           "CompetitiveCoevolutionParticleReevaluationResponseStrategy should only be used with Particles");
     if (populationID == -1)
       populationID =
           ((Int) e.getProperties().get(EntityType.Coevolution.POPULATION_ID)).intValue();
     Blackboard<Enum<?>, Type> blackboard = new Blackboard<Enum<?>, Type>();
     blackboard.put(EntityType.CANDIDATE_SOLUTION, ((AbstractParticle) e).getBestPosition());
     blackboard.put(EntityType.Coevolution.BOARD, new EntityScoreboard());
     Fitness val = currentAlgorithm.getOptimisationProblem().getFitness(blackboard);
     e.getProperties().put(EntityType.Particle.BEST_FITNESS, val);
     // if currentV is better than re-evaluated pBest, then replace it
     if (e.getFitness().compareTo(e.getBestFitness()) > 0) {
       e.getProperties().put(EntityType.Particle.BEST_FITNESS, e.getFitness());
       e.getProperties()
           .put(
               EntityType.Particle.BEST_POSITION,
               e.getProperties().get(EntityType.CANDIDATE_SOLUTION).getClone());
     }
   }
 }
Esempio n. 5
0
  @Override
  public Vector get(Particle particle) {
    Vector velocity = (Vector) particle.getVelocity();
    Vector position = (Vector) particle.getPosition();
    PSO algorithm = (PSO) AbstractAlgorithm.get();
    int ns = (int) nSize.getParameter();
    fj.data.List<Particle> neighbours =
        algorithm
            .getTopology()
            .sort(
                Ord.ord(
                    VectorBasedFunctions.sortByDistance(particle, new EuclideanDistanceMeasure())))
            .take(ns);

    Vector.Builder builder = Vector.newBuilder();
    for (int i = 0; i < particle.getDimension(); ++i) {
      double informationSum = 0.0;
      double randomSum = 0;

      for (Particle currentTarget : neighbours) {
        Vector currentTargetPosition = (Vector) currentTarget.getBestPosition();
        double randomComponent = Rand.nextDouble() * (4.1 / ns);
        informationSum += randomComponent * currentTargetPosition.doubleValueOf(i);
        randomSum += randomComponent;
      }

      double value =
          inertiaWeight.getParameter()
              * (velocity.doubleValueOf(i)
                  + randomSum * ((informationSum / (ns * randomSum) - position.doubleValueOf(i))));
      builder.add(value);
    }

    return builder.build();
  }
Esempio n. 6
0
 @SuppressWarnings("unchecked")
 @Override
 public StructuredType get(Particle particle) {
   MultiPopulationBasedAlgorithm topLevelAlgorithm =
       (MultiPopulationBasedAlgorithm) AbstractAlgorithm.getAlgorithmList().get(0);
   Blackboard<Enum<?>, Type> knowledge =
       (Blackboard<Enum<?>, Type>)
           this.knowledgeTransferStrategy.transferKnowledge(topLevelAlgorithm.getPopulations());
   return (StructuredType) knowledge.get(EntityType.Particle.BEST_POSITION);
 }
  /** {@inheritDoc} */
  @Override
  public int compare(E o1, E o2) {
    SinglePopulationBasedAlgorithm populationBasedAlgorithm =
        (SinglePopulationBasedAlgorithm) AbstractAlgorithm.getAlgorithmList().index(0);
    MOOptimisationProblem problem =
        ((MOOptimisationProblem) populationBasedAlgorithm.getOptimisationProblem());

    Particle p1 = (Particle) o1;
    Particle p2 = (Particle) o2;
    MOFitness fitness1 = ((MOFitness) problem.getFitness(p1.getBestPosition()));
    MOFitness fitness2 = ((MOFitness) problem.getFitness(p2.getBestPosition()));

    int value = fitness1.compareTo(fitness2);
    if (fitness1.compareTo(fitness2) == 0) {
      int random = Rand.nextInt(20);
      if (random > 10) value *= -1;
    }
    return value;
  }
  /**
   * This is an Synchronous strategy:
   *
   * <ol>
   *   <li>For all particles:
   *       <ol>
   *         <li>Update the particle velocity
   *         <li>Update the particle position
   *       </ol>
   *   <li>For all particles:
   *       <ol>
   *         <li>Calculate the particle fitness
   *         <li>For all particles in the current particle's neighbourhood:
   *             <ol>
   *               <li>Update the neighbourhood best
   *             </ol>
   *       </ol>
   * </ol>
   *
   * @see
   *     net.sourceforge.cilib.PSO.IterationStrategy#performIteration(net.sourceforge.cilib.PSO.PSO)
   * @param pso The {@link PSO} to have an iteration applied.
   */
  @Override
  public void performIteration(PSO pso) {
    Topology<Particle> topology = pso.getTopology();

    for (Particle current : topology) {
      current.updateVelocity();
      current.updatePosition(); // TODO: replace with visitor (will simplify particle interface)

      boundaryConstraint.enforce(current);
    }

    Problem problem = AbstractAlgorithm.getAlgorithmList().get(0).getOptimisationProblem();

    for (Particle current : topology) {
      current.calculateFitness();
      for (Particle other : topology.neighbourhood(current)) {
        Particle p1 = current.getNeighbourhoodBest().getClone();
        Particle p2 = other.getNeighbourhoodBest().getClone();
        OptimisationSolution s1 =
            new OptimisationSolution(
                p1.getCandidateSolution().getClone(),
                problem.getFitness(p1.getCandidateSolution().getClone()));
        OptimisationSolution s2 =
            new OptimisationSolution(
                p2.getCandidateSolution().getClone(),
                problem.getFitness(p2.getCandidateSolution().getClone()));
        MOFitness fitness1 = (MOFitness) s1.getFitness();
        MOFitness fitness2 = (MOFitness) s2.getFitness();
        //                System.out.println("fitness1 = ");
        //                for (int i=0; i < fitness1.getDimension(); i++)
        //                    System.out.println(fitness1.getFitness(i).getValue());
        //
        //                System.out.println("fitness2 = ");
        //                for (int i=0; i < fitness2.getDimension(); i++)
        //                    System.out.println(fitness2.getFitness(i).getValue());
        if (fitness1.compareTo(fitness2) > 0) {
          other.setNeighbourhoodBest(current);
        }
      }
    }
  }
Esempio n. 9
0
 /** Evaluates the function. */
 @Override
 public Double f(Vector x) {
   this.tau = AbstractAlgorithm.get().getIterations();
   return this.apply(this.tau, x);
 }
  /** {@inheritDoc} */
  @Override
  public Vector get(Particle particle) {
    double averageParticleVelocity = 0.0;

    Vector averageVelocity = null; // velocity.getClone();
    //        averageVelocity.reset();
    PSO pso = (PSO) AbstractAlgorithm.get();
    for (Particle p : pso.getTopology()) {
      if (averageVelocity == null) {
        averageVelocity = (Vector) p.getVelocity();
        continue;
      }
      Vector particleVelocity = (Vector) p.getVelocity();
      averageVelocity = averageVelocity.plus(particleVelocity);
      averageParticleVelocity += particleVelocity.norm();
    }
    averageVelocity = averageVelocity.divide(particle.getDimension());
    averageParticleVelocity /= particle.getDimension();

    double swarmCenterVelocity = averageVelocity.norm();
    double swarmCoherence = calculateSwarmCoherence(swarmCenterVelocity, averageParticleVelocity);

    double sigmoidValue = this.sigmoid.apply(swarmCoherence);

    Vector standardVelocity = this.delegate.get(particle);

    Vector.Builder builder = Vector.newBuilder();
    for (int i = 0; i < particle.getDimension(); ++i) {
      double coherenceVelocity =
          this.scalingFactor.getParameter()
              * sigmoidValue
              * averageVelocity.doubleValueOf(i)
              * this.randomNumber.getRandomNumber();
      builder.add(coherenceVelocity);
    }
    Vector coherence = builder.build();

    return Vectors.sumOf(standardVelocity, coherence);

    //        float social = socialRandomGenerator.nextFloat();
    //        float cognitive = cognitiveRandomGenerator.nextFloat();
    //
    //        //DistanceMeasure adm = new AbsoluteDistanceMeasure();
    //        //DistanceMeasure dm = new MetricDistanceMeasure();
    //
    //        double avgv = 0.0;
    //        double swv = 0.0;
    //        Topology<Particle> topology = ((PSO)Algorithm.get()).getTopology();
    //          Iterator<? extends Particle> it = topology.neighbourhood(null);
    //          double[] al = new double[particle.getDimension()];
    //           while (it.hasNext()) {
    //               Particle pl = it.next();
    //               double tmpv = 0.0;
    //               //double tmpsv = 0.0;
    //               for(int dim = 0; dim < particle.getDimension(); dim++) {
    //                al[dim] = al[dim]+((Vector)pl.getVelocity()).getReal(dim);
    //                   tmpv += Math.pow(((Vector)pl.getVelocity()).getReal(dim), 2);
    //               }
    //               tmpv = Math.sqrt(tmpv);
    //               avgv += tmpv;
    //           }
    //           for(int i = 0; i < particle.getDimension(); i++) {
    //            //al.set(i, ;
    //            swv += (al[i]/topology.size()) * (al[i]/topology.size());
    //        }
    //        swv = Math.sqrt(swv);
    //
    //        for (int i = 0; i < particle.getDimension(); ++i) {
    //            double tmp = 0.0;
    //            tmp = inertiaWeight.getParameter()*velocity.getReal(i)
    //                + cognitive * (bestPosition.getReal(i) - position.getReal(i)) *
    // cognitiveAcceleration.getParameter()
    //                + social * (nBestPosition.getReal(i) - position.getReal(i)) *
    // socialAcceleration.getParameter();
    //
    //            double avgdim = 0.0;
    //              it = topology.neighbourhood(null);
    //               while (it.hasNext()) {
    //                   avgdim += ((Vector)(it.next().getVelocity())).getReal(i);
    //               }
    //            avgdim /= particle.getDimension();
    //
    //            double cvelocity = MathUtil.sigmoid(swv/avgv)*avgdim*randomNumber.getCauchy();
    //
    //            System.out.println(cvelocity);
    //            tmp += cvelocity;
    //
    //            velocity.setReal(i, tmp);
    //
    //            clamp(velocity, i);
    //        }
  }
Esempio n. 11
0
 /** This is used to help with the unit test. i.e. no "empty stack exception" */
 public int getIteration() {
   return AbstractAlgorithm.get().getIterations();
 }
Esempio n. 12
0
 /** Evaluates the function. */
 @Override
 public Double apply(Vector x) {
   int iteration = AbstractAlgorithm.get().getIterations();
   return this.apply(iteration, x);
 }