public Instances transformInstances(MultiLabelInstances mlData) throws Exception {
    labelIndices = mlData.getLabelIndices();
    numOfLabels = mlData.getNumLabels();
    Instances data = mlData.getDataSet();

    Instances transformed = new Instances(mlData.getDataSet(), 0);

    // delete all labels
    transformed = RemoveAllLabels.transformInstances(transformed, labelIndices);

    // add single label attribute
    ArrayList<String> classValues = new ArrayList<String>(numOfLabels);
    for (int x = 0; x < numOfLabels; x++) {
      classValues.add("Class" + (x + 1));
    }
    Attribute newClass = new Attribute("Class", classValues);
    transformed.insertAttributeAt(newClass, transformed.numAttributes());
    transformed.setClassIndex(transformed.numAttributes() - 1);

    for (int instanceIndex = 0; instanceIndex < data.numInstances(); instanceIndex++) {
      // System.out.println(data.instance(instanceIndex).toString());
      List<Instance> result = transformInstance(data.instance(instanceIndex));
      for (Instance instance : result) {
        // System.out.println(instance.toString());
        transformed.add(instance);
        // System.out.println(transformed.instance(transformed.numInstances()-1));
      }
    }
    return transformed;
  }
Esempio n. 2
0
  /**
   * Calculate metric value
   *
   * @param mlData Multi-label dataset to which calculate the metric
   * @return Value of the metric
   */
  public double calculate(MultiLabelInstances mlData) {
    Instances instances = mlData.getDataSet();
    int nInstances = mlData.getNumInstances();

    double avg;
    double var2;
    double var4;
    double val;
    int nNumeric = 0;
    double mean = 0;

    Set<Attribute> attributesSet = mlData.getFeatureAttributes();

    for (Attribute att : attributesSet) {
      if (att.isNumeric()) {
        nNumeric++;
        avg = instances.meanOrMode(att);
        var2 = 0;
        var4 = 0;

        for (Instance inst : instances) {
          val = inst.value(att);
          var2 += Math.pow(val - avg, 2);
          var4 += Math.pow(val - avg, 4);
        }

        double kurtosis = (nInstances * var4 / Math.pow(var2, 2)) - 3;
        double sampleKurtosis =
            (kurtosis * (nInstances + 1) + 6)
                * (nInstances - 1)
                / ((nInstances - 2) * (nInstances - 3));
        mean += sampleKurtosis;
      }
    }
    if (nNumeric > 0) {
      mean = mean / nNumeric;
    } else {
      mean = Double.NaN;
    }

    this.value = mean;
    return value;
  }
 @Override
 protected void buildInternal(MultiLabelInstances trainingSet) throws Exception {
   header = new Instances(trainingSet.getDataSet(), 0);
   baseLearner.build(trainingSet);
 }