@operator( value = {"percent_absolute_deviation"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {IConcept.STATISTIC}) @doc( value = "percent absolute deviation indicator for 2 series of values: percent_absolute_deviation(list_vals_observe,list_vals_sim)", examples = { @example( value = "percent_absolute_deviation([200,300,150,150,200],[250,250,100,200,200])", isExecutable = false) }) public static double percentAbsoluteDeviation( final IScope scope, final IList<Double> vals1, final IList<Double> vals2) { if (vals1 == null || vals2 == null) { return 1; } int nb = vals1.size(); if (nb != vals2.size()) { return 0; } double sum = 0; double coeff = 0; for (int i = 0; i < nb; i++) { double val1 = Cast.asFloat(scope, vals1.get(i)); double val2 = Cast.asFloat(scope, vals2.get(i)); coeff += val1; sum += FastMath.abs(val1 - val2) * 100.0; } if (coeff == 0) { return 0; } return sum / coeff; }
private static Instances convertToInstances( final IScope scope, final IList<String> attributes, final IAddressableContainer<Integer, IAgent, Integer, IAgent> agents) throws GamaRuntimeException { FastVector attribs = new FastVector(); for (String att : attributes) { attribs.addElement(new Attribute(att)); } Instances dataset = new Instances(scope.getAgentScope().getName(), attribs, agents.length(scope)); for (IAgent ag : agents.iterable(scope)) { int nb = attributes.size(); double vals[] = new double[nb]; for (int i = 0; i < nb; i++) { String attrib = attributes.get(i); Double var = Cast.asFloat(scope, ag.getDirectVarValue(scope, attrib)); vals[i] = var; } Instance instance = new Instance(1, vals); dataset.add(instance); } return dataset; }
public void updateXValues(IScope scope, int chartCycle, int targetNb) { Object xval, xlab; if (this.useXSource || this.useXLabels) { if (this.useXSource) { xval = xsource.resolveAgainst(scope).value(scope); } else { xval = xlabels.resolveAgainst(scope).value(scope); } if (this.useXLabels) { xlab = xlabels.resolveAgainst(scope).value(scope); } else { xlab = xsource.resolveAgainst(scope).value(scope); } if (xval instanceof GamaList) { IList xv2 = Cast.asList(scope, xval); IList xl2 = Cast.asList(scope, xlab); if (this.useXSource && xv2.size() > 0 && xv2.get(0) instanceof Number) { XSeriesValues = new ArrayList<Double>(); Xcategories = new ArrayList<String>(); for (int i = 0; i < xv2.size(); i++) { XSeriesValues.add(new Double(Cast.asFloat(scope, xv2.get(i)))); Xcategories.add(Cast.asString(scope, xl2.get(i))); } } else { if (xv2.size() > Xcategories.size()) { Xcategories = new ArrayList<String>(); for (int i = 0; i < xv2.size(); i++) { if (i >= XSeriesValues.size()) { XSeriesValues.add(new Double(getXCycleOrPlusOneForBatch(scope, chartCycle))); } Xcategories.add(Cast.asString(scope, xl2.get(i))); } } } if (xv2.size() < targetNb) { throw GamaRuntimeException.error( "The x-serie length (" + xv2.size() + ") should NOT be shorter than any series length (" + targetNb + ") !", scope); } } else { if (this.useXSource && xval instanceof Number) { double dvalue = Cast.asFloat(scope, xval); String lvalue = Cast.asString(scope, xlab); XSeriesValues.add(new Double(dvalue)); Xcategories.add(lvalue); } if (targetNb == -1 && !this.forceNoXAccumulate) targetNb = XSeriesValues.size() + 1; while (XSeriesValues.size() < targetNb) { XSeriesValues.add(new Double(getXCycleOrPlusOneForBatch(scope, chartCycle))); Xcategories.add(Cast.asString(scope, xlab)); } } } if (!this.useXSource && !this.useXLabels) { if (targetNb == -1 && !this.forceNoXAccumulate && commonXindex >= XSeriesValues.size()) targetNb = XSeriesValues.size() + 1; while (XSeriesValues.size() < targetNb) { addCommonXValue(scope, getXCycleOrPlusOneForBatch(scope, chartCycle)); } } }
@operator( value = {"kappa"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {}) @doc( value = "kappa indicator for 2 map comparisons: kappa(list_vals1,list_vals2,categories, weights). Reference: Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20. ", examples = { @example( value = "kappa([cat1,cat1,cat2,cat3,cat2],[cat2,cat1,cat2,cat1,cat2],[cat1,cat2,cat3], [1.0, 2.0, 3.0, 1.0, 5.0])", isExecutable = false) }) public static double kappa( final IScope scope, final IList<Object> vals1, final IList<Object> vals2, final List<Object> categories, final IList<Object> weights) { if (vals1 == null || vals2 == null) { return 1; } int nb = vals1.size(); if (nb != vals2.size()) { return 0; } int nbCat = categories.size(); double[] X = new double[nbCat]; double[] Y = new double[nbCat]; double[][] contigency = new double[nbCat][nbCat]; for (int j = 0; j < nbCat; j++) { X[j] = 0; Y[j] = 0; for (int k = 0; k < nbCat; k++) { contigency[j][k] = 0; } } Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; Object val1 = vals1.get(i); Object val2 = vals2.get(i); int indexVal1 = categoriesId.get(val1); int indexVal2 = categoriesId.get(val2); X[indexVal1] += weight; Y[indexVal2] += weight; contigency[indexVal1][indexVal2] += weight; } for (int j = 0; j < nbCat; j++) { X[j] /= total; Y[j] /= total; for (int k = 0; k < nbCat; k++) { contigency[j][k] /= total; } } double po = 0; double pe = 0; for (int i = 0; i < nbCat; i++) { po += contigency[i][i]; pe += X[i] * Y[i]; } if (pe == 1) { return 1; } return (po - pe) / (1 - pe); }
@operator( value = {"kappa_sim"}, content_type = IType.FLOAT, category = {IOperatorCategory.MAP_COMPARAISON}, concept = {}) @doc( value = "kappa simulation indicator for 2 map comparisons: kappa(list_valsInits,list_valsObs,list_valsSim, categories, weights). Reference: van Vliet, J., Bregt, A.K. & Hagen-Zanker, A. (2011). Revisiting Kappa to account for change in the accuracy assessment of land-use change models, Ecological Modelling 222(8)", examples = { @example( value = "kappa([cat1,cat1,cat2,cat2,cat2],[cat2,cat1,cat2,cat1,cat3],[cat2,cat1,cat2,cat3,cat3], [cat1,cat2,cat3],[1.0, 2.0, 3.0, 1.0, 5.0])", isExecutable = false) }) public static double kappaSimulation( final IScope scope, final IList<Object> valsInit, final IList<Object> valsObs, final IList<Object> valsSim, final List<Object> categories, final IList<Object> weights) { if (valsInit == null || valsObs == null || valsSim == null) { return 1; } int nb = valsInit.size(); if (nb != valsObs.size() || nb != valsSim.size()) { return 0; } int nbCat = categories.size(); double[] O = new double[nbCat]; double[][] contigency = new double[nbCat][nbCat]; double[][] contigencyOA = new double[nbCat][nbCat]; double[][] contigencyOS = new double[nbCat][nbCat]; for (int j = 0; j < nbCat; j++) { O[j] = 0; for (int k = 0; k < nbCat; k++) { contigency[j][k] = 0; contigencyOA[j][k] = 0; contigencyOS[j][k] = 0; } } Map<Object, Integer> categoriesId = new TOrderedHashMap<Object, Integer>(); for (int i = 0; i < nbCat; i++) { categoriesId.put(categories.get(i), i); } double total = 0; for (int i = 0; i < nb; i++) { double weight = weights == null ? 1.0 : Cast.asFloat(scope, weights.get(i)); total += weight; Object val1 = valsObs.get(i); Object val2 = valsSim.get(i); Object valO = valsInit.get(i); int indexVal1 = categoriesId.get(val1); int indexVal2 = categoriesId.get(val2); int indexValO = categoriesId.get(valO); O[indexValO] += weight; contigency[indexVal1][indexVal2] += weight; contigencyOA[indexValO][indexVal1] += weight; contigencyOS[indexValO][indexVal2] += weight; } for (int j = 0; j < nbCat; j++) { for (int k = 0; k < nbCat; k++) { contigency[j][k] /= total; if (O[j] > 0) { contigencyOA[j][k] /= O[j]; contigencyOS[j][k] /= O[j]; } } O[j] /= total; } double po = 0; double pe = 0; for (int j = 0; j < nbCat; j++) { po += contigency[j][j]; double sum = 0; for (int i = 0; i < nbCat; i++) { sum += contigencyOA[j][i] * contigencyOS[j][i]; } pe += O[j] * sum; } if (pe == 1) { return 1; } return (po - pe) / (1 - pe); }